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1 Introduction

This report presents our findings on the paper “Control of Low-Inertia Power Grids: A Model
Reduction Approach” by Sebastian Curi, Dominic Groß and Florian Dörfler, presented on 2017
IEEE 56th Annual Conference on Decision and Control (CDC).

The paper introduces a dq modeling framework for both devices and network. The main
results of the paper are:

• A model order reduction for electrical differential equations based on Tikhonov’s Theorem.

• A parallel between the voltage on the DC side of converters vdc with the frequency of the
synchronous generators ω.

• A decentralized nonlinear droop control to stabilize frequency. A key component is that
the proposed controller is not dependent on measurements of frequency for the converters.

The paper introduces the modelling for each device in an absolute reference frame that is
assumed to be known for each device. It uses a 2 states generator model, plus an electromotive
force behind an impedance. The entire model uses currents in the dq framework as the states
of the AC system. Converter models are based in an average switching model, while loads are
modeled as constant RL impedances. No control is considered directly in the models, that are
general enough to consider classic or novel techniques if it’s required. Though not a strict novelty
of the paper, they use a precise and formal notation for time-domain modelling of multi-source
power networks with linear network elements.

1.1 Project objectives

In power systems one of the key elements of any model is for it to be actually possible to simulate
study cases using that model. Curi’s paper is framed mostly as a theoretical paper, so a first
step for us was to actually simulate in a tool the proposed model.

A second objective was to analyze the model order reduction proposed in the paper. That
is, for simulation purposes, does it make a difference considering the full order model against
the reduced model? What about the simulation times?

Finally, a third objective was to implement standard controllers in the proposed model. That
is, setting a simplified AVR and droop control for generators and droop controllers for DC/AC
converters.

1.2 Organization

The report is organized as follows. Section 2 introduces the model proposed by the authors,
summarizing their key components, devices and equations. Section 3 introduces the framework
used to simulate the proposed model in Matlab. Section 4 discusses some results that the
authors’ proposed and describes our extensions. Section 5 presents the simulations performed in
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Matlab to analyze the behaviour of the system under disturbances. Finally, Section 6 concludes
the report.

2 Modelling framework

The model proposed works in a dq framework, since it is assumed that the electrical components
of each device have identical values for each phase and that all three-phase signals are balanced.
That is a three-phase voltage (or current), vabc ∈ R3, can be written in (α, β) coordinates via
the Clarke transformation:

vαβ = Tabc→αβ vabc, Tabc→αβ =

√
2

3

[
1 −1/2 −1/2

0
√

3/2 −
√

3/2

]
And hence a voltage can be written in a rotating frame at nominal frequency θr = ω0t, where
ω0 = 1 pu (2π · 60 rad/s), using the Park transformation:

vdq = R(θr)vαβ = R(θr)Tabc→αβ vabc, R(θr) =

[
cos(θr) − sin(θr)
sin(θr) cos(θr)

]
All parameters in the following sections are written in a system per unit basis.

2.1 Notation

We define R as the set of real numbers, R≥0 as the set of non-negative real numbers and S1
the set of the unitary circle. The parameter j ∈ R2×2 plays the same role as in the imaginary
number, defined as:

j = R(π/2) =

[
0 −1
1 0

]
12×2 is the 2× 2 identity matrix and r(θ) denote the position in the unit circle with angle θ:

r(θ) :=

[
cos(θ)
sin(θ)

]

2.2 Sets, states and parameters

The power system considered has the following elements:

• nv number of AC buses

• nt number of transmission lines or transformers (series element that connect two nodes)

• ng number of synchronous generators

• nc number of DC/AC converters

• nl number of loads.
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2.2.1 Buses

Each bus k has the following components:

Symbol Type Description Info.
vk State AC voltage in pu in the dq framework vk ∈ R2

Gv,k Parameter Shunt conductance in pu of bus k Gk = gk12×2

Cv,k Parameter Shunt capacitance in pu of bus k Ck = ck12×2

Yv,k Parameter Shunt admittance in pu of bus k Yk = Gk + jω0Ck

Table 1: States and parameters of each bus k.

Then, for each bus the model requires 2 states, the AC voltage in the d component and the
AC voltage in the q component. Thus, buses contribute with 2nv states to the model.

2.2.2 Lines

Each line k has the following components:

Symbol Type Description Info.
it,k State AC current across the line in pu in the dq framework it,k ∈ R2

Rt,k Parameter Series resistance in pu of line k Rt,k = rt,k12×2

Lt,k Parameter Series inductance in pu of line k Lt,k = `t,k12×2

Zt,k Parameter Series impedance in pu of line k Zt,k = Rt,k + jω0Lt,k

Table 2: States and parameters of each line k.

Then, for each line the model requires 2 states, the AC current across the line in the d
component and the AC current in the q component. Thus, lines contribute with 2nt states to
the model.

In addition, between buses and lines is defined the topology of the network, described by the
oriented incidence matrix E . This matrix has a size of nv × nt. Each row represent a particular
bus, while each column represent a particular line. The matrix is then defined by:

E = [Et,1 . . . Et,m . . . Et,nt ]

where each column m: Et,m, defines which buses are connected to line m. The sending end is
completed with −1, while the receiving end is completed with a 1. All the other elements are
zero.

2.2.3 Synchronous Machines

Each synchronous machine k has the following components:
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Symbol Type Description Info.
θg,k State Rotor angle relative to an absolute reference frame θr θg,k ∈ S1
ωg,k State Absolute angular rotor velocity in pu ωg,k ∈ R
ig,k State Stator AC current flowing in, in pu in dq framework ig,k ∈ R2

if,k Input Rotor DC field current in pu if,k ∈ R
τm,k Input Mechanical torque applied to the rotor, in pu τm,k ∈ R
Rg,k Parameter Stator series resistance in pu Rg,k = rg,k12×2

Lg,k Parameter Stator series inductance in pu Lg,k = `g,k12×2

Zg,k Parameter Stator series impedance in pu Zg,k = Rg,k + jω0Lg,k

`m,k Parameter Mutual inductance between rotor and stator in pu `m,k ∈ R≥0

Mk Parameter Inertia constant of generator k in MWs/MVA Mk ∈ R≥0

Table 3: States, inputs and parameters of each generator k.

Each generator k is also described with an indicator vector Ig,k ∈ {1, 0}nv that has a 1 on
the bus that is located and 0 otherwise.

For each generator, the model requires 4 states, the rotor angle, the angular rotor velocity,
the stator AC current, both in the d and q components. Thus, generators contribute with 4ng
states to the model. In addition, each generator adds two inputs, the mechanical torque and
the field current.

2.2.4 3-Phase DC/AC Converter

Each DC/AC converter k, without matching control, has the following components:

Symbol Type Description Info.
vdc,k State Voltage on the DC side in pu vdc,k ∈ R
ic,k State Converter AC current flowing in, in pu in dq framework ic,k ∈ R2

mk Input Averaged modulation signal for each dq framework mk ∈ R2
[−1,1]

idc,k Input Current source from buck/boost that supplies the DC side idc,k ∈ R
Rc,k Parameter Series resistance of the output RL filter, in pu Rc,k = rc,k12×2

Lc,k Parameter Series inductance of the output RL filter, in pu Lc,k = `c,k12×2

Zc,k Parameter Series impedance of the output RL filter, in pu Zc,k = Rc,k + jω0Lc,k

Gdc,k Parameter Shunt conductance on the DC side Gdc,k ∈ R≥0

Cdc,k Parameter Shunt capacitance on the DC side Cdc,k ∈ R≥0

Table 4: States, inputs and parameters of each converter k.

Each converter k is also described with an indicator vector Ic,k ∈ {1, 0}nv that has a 1 on
the bus that is located and 0 otherwise.

For each converter, the model requires two states, the voltage on the DC side and the output
AC current in d and q components. Thus, converters contribute 3nc states to the model. In
addition, each converter adds two inputs, the DC current coming from the energy source and
the modulation signals that construct the AC voltage.
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2.2.5 Loads

Each balanced load k is defined by:

Symbol Type Description Info.
il,k State AC current flowing into load, in pu in dq framework il,k ∈ R2

Rl,k Parameter Resistance of the load, in pu Rl,k = rl,k12×2

Ll,k Parameter Inductance of the load, in pu Ll,k = `l,k12×2

Zl,k Parameter Impedance of the load, in pu Zl,k = Rl,k + jω0Ll,k

Table 5: States and parameters of each load k.

Each load k is also described with an indicator vector Il,k ∈ {1, 0}nv that has a 1 on the bus
that is located and 0 otherwise.

For each load, the model requires 2 states, the AC current flowing into the load, both in d
and q components. Thus, loads contribute wth 2nl states to the model.

2.3 Dynamical system

The authors organize the model dividing its states in two categories:

• The so called “DC” states x, that are the ones that represents DC states, that should
converge to a fixed value, given by:

x = (θg, ωg, vdc)

• The so called “AC” states z, that are the ones that represents AC states in their original
frame. Those are:

z = (ig, ic, il, it, v)

In addition, the inputs are defined by u = (τm, if , idc,m). With this, the system can be written
as: [

ẋ
ż

]
=

[
fdc(x, z, u)
fac(x, z, u)

]

2.3.1 DC dynamical system

The DC equations are given by fdc(x, z, u):

θ̇g,k = ω0(ωg − 1) ∀k ∈ {1, . . . , ng} (DC–1)

ω̇g,k =
M−1k

2

{
−Dk(ωg − 1) + τm,k − τe(θg,k, ig,k, if,k)

}
∀k ∈ {1, . . . , ng} (DC–2)

Cdc,kv̇dc,k = −Gdc,kvdc,k + idc,k − isw,k(ic,k,mk) ∀k ∈ {1, . . . , nc} (DC–3)
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with ω0 = 2π · 60 rad/s and:

τe(θg,k, ig,k, if,k) = −`m,kif,ki>g,kjr(θg,k) ∀k ∈ {1, . . . , ng} (Aux–1)

isw,k(ic,k,mk) =
1

2
i>c,kmk ∀k ∈ {1, . . . , nc} (Aux–2)

Equations (DC–1) and (DC–2) are the standard equations for a 2-states model of a syn-
chronous machine. The electrical torque produced by the synchronous machine is given by
equation (Aux–1). Note that the induced voltage for a generator is given by:

vind,k = `m,kif,kωg,kjr(θg,k) (Aux–3)

that implies that the electrical torque of the machine k is simply given by:

τe =
i>g,kvind,k

ω0ωg,t
= −`m,kif,ki>g,kjr(θg,k) ≈ vdind,kidg,k + vqind,ki

q
g,k = pe

as expected for a classical model of synchronous machine modeled by 2 states and an EMF
behind a reactance.

Finally, equation (DC–3) is the current Kirchhoff law on the DC side of the converter. The
averaged DC current flowing out through the switches is given by isw,k defined in equation
(Aux–2).

2.3.2 AC dynamical system

The AC equations are given by fac(x, z, u):

Lt,k i̇t,k = −Zt,kit,k + E>t,kv ∀k ∈ {1, . . . , nt} (AC–1)

Ckv̇k = −Yv,kvk + Et,kit + iin,k ∀k ∈ {1, . . . , nv} (AC–2)

Lg,k i̇g,k = −Zg,kig,k + I>g,kv − vind,k ∀k ∈ {1, . . . , ng} (AC–3)

Lc,k i̇c,k = −Zc,kic,k + I>c,kv − vsw,k ∀k ∈ {1, . . . , nc} (AC–4)

Ll,k i̇l,k = −Zl,kil,k + I>l,kv ∀k ∈ {1, . . . , ng} (AC–5)

on where I = I ⊗12×2 is the indicator matrix on which each device is located, but expanded to
consider both d and q frames. In addition, vind,k is given by (Aux–3) and:

iin,k(ig, ic, il) =
[
Igig + Icic + Ilil

]
k

∀k ∈ {1, . . . , nv} (Aux–4)

vsw,k(vdc,k,mk) =
1

2
vdc,kmk ∀k ∈ {1, . . . , nc} (Aux–5)

Equation (AC–1) is the Kirchhoff voltage law, that states that the evolution of the current
through a line k is driven by the difference of voltages between the buses the line is connected
and the line impedance.

Equation (AC–2) is the evolution of the bus voltage k, that depends on the shunt admittance
and the current flowing in/out to connected lines and the current flowing in/out of the devices
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that are connected on that bus. These currents are given by (Aux–4), that port current from
devices that are connected to bus k.

Equation (AC–3) is the evolution of AC stator current of each generator k, that depends on
the series impedance, the voltage that is connected and the induced EMF behind that impedance.
That induced voltage is given by equation (Aux–3).

Equation (AC–4) is the evolution of AC output current of each DC/AC converter k, that
depends on the output RL filter impedance, the bus voltage that the converter is connected and
the averaged switched voltage given by equation (Aux–5).

Finally, equation (AC–5) is the evolution of AC current flowing into 3-phase balanced loads,
that depends on the bus voltage that the load is connected and its impedance.

3 Software implementation

The entire model was coded in Matlab and it is publicly available in the EMAC repo at https:
//github.com/Energy-MAC/CuriDynamicModel.

3.1 Data

Data is structured using csv files. Buses, lines, generators, converters and loads has their own
csv file on which the number of devices and parameters are specified.

Figure 1: Generator csv data. Each row is a generator with parameters defined at each column.

Depending on how many devices are considered in the data files the model will define the
necessary matrices and parameters to construct the system of differential equations.

We also wrote a utility to import network topology and line impedances from MATPOWER
cases into our model (see ‘load network.m’).

3.2 Dynamical equations

Each equation is defined in a particular Matlab function script that receives the parameters and
return the right hand side of the aforementioned equations.

Functions are defined in a matrix form when is possible to reduce computational burden
when constructing the model.
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Figure 2: Equation (DC–2) defined in the Matlab script. For this equation the left hand side term M is
moved to the right hand side as M−1.

With all the equations properly defined in the script, a differential equation function script
is used. This script has the main purpose of stacking the entire dynamical system in a single
vector. This script is then called by the method ode15s in Matlab. The mass function of the
method is also defined based on the parameters on the left hand side of the equations.

Finally, our main script has two primary parts. First, it reads all the input files and construct
the parameter and matrices to be used in the functions. Second, it calls the method ode15s to
solve the entire dynamical system.

4 Discussion of model and extensions

4.1 Stiff modelling and model order reduction

One of the key results mentioned in [1] is that the AC equations can be simplified by the model
order reduction method proposed to algebraic equation by setting the derivative to zero. By
comparing the DC and AC equations, it can be seen that that most of DC equations have time
constant between 1 ∼ 10s, except the DC voltage of the DC side of the converters. On the other
hand, AC equations have time constants that depend on the inductance or capacitance of the
devices. Those values are on the order of 10−5 seconds. This a extremely stiff model.

By trying to solve this model directly as an ODE, for example using methods like ode45 or
ode23 by passing the left hand side time constant to the right hand side (i.e. dividing for that
inductance/capacitance), the model doesn’t finish the simulation in a reasonable timeframe.
This is expected, since those methods are suited for nonstiff differential equations.

As an alternative, we use a method for stiff differential equations, like ode15s to solve it.
However, given the typical values, there is no difference in setting the left hand side (that is the
Mass Matrix) to the values of 10−5 or directly setting those to zero. The ode15s method realize
that those equations are essentially algebraic and don’t use a smaller time step to properly solve
those ODEs. Thus, in practice, the model order reduction proposed in [1] is always enforced in a
simulation because it is not practical (because it is overwhelmingly computationally expensive)
to implement those equations as ODEs.
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4.2 Finding DC and AC equilibrium points

As the model presented in the paper includes no feedback control, the choice of inputs is left
to the users. During our debugging process, we wanted to be able test whether the system had
stable equilibria. This introduced the need to find inputs that would admit an equilibrium.
For example, with a single generator and a single load, arbitrary inputs of mechanical torque
and excitation current do not necessarily result in an equilibrium. The task g of finding an
equilibrium x∗ of a function f with parameters y, and initial guess at the equilibrium x can be
written as:

g : (x, y, f) 7→ x∗|f(x∗, y) = 0

In our case, we have state-update equations fdc and fac for our DC and AC states, and each are
a functions of inputs u, DC states x, and AC states z:[

ẋ
ż

]
=

[
fdc(x, z, u)
fac(x, z, u)

]

For the same reasons that a stiff solver is necessary to simulate the differential equation,
a straightforward numerical algorithm (e.g. Newton-Raphson) to finding the equilibrium does
not converge. We were unable to find a version of MATLAB’s fsolve that could handle this
ill-conditioned problem, so we built on the approach in the paper to find an equilibrium by
separating the DC and AC states and using nested fsolve calls:

gac : (zinit, (x, u), fac) 7→ z∗|fac(x, z∗, u) = 0

gdc : (xinit, u, fdc) 7→ x∗|fdc(x∗, gac(zinit, (x∗, u)), u) = 0

The first expression amounts to finding an equilibrium of the AC states given the DC states
and control, and the second amounts to finding an equilibrium of DC states given control and
the condition that the AC states are at equilibrium. gac can be solved using MATLAB’s fsolve
and is implemented in our project as ‘find ac.m’. gdc can be found with fsolve as well, but
amounts to finding the zeros of the reduced model introduced in the paper. That is, Curi defines
the function:

fred(x, u) := fdc(x, h(x, u), u) = fdc(x, gac(zinit, (x, u)), u)

It turns out that the way Curi defines h(x, u) as the steady state of the AC variables is equivalent
to our definition of gac above, and it is equivalent for any initial guess zinit because fac is
globally exponentially stable with the existence of a unique equilibrium (shown in the paper).
We implement this in ‘find eq.m’ where we effectively use fsolve to find the equilibrium of fred
given inputs u, and we use our implementation of gac to find equilibrium values of the AC states
for any DC states and inputs.

As mentioned above, gdc does not have a solution for arbitrary u (if it does not, fsolve

will not converge, and simulations with this arbitrary input result in sustained oscillations).
To address this, we implemented another layer that allows free inputs, meaning that only a
subset of inputs would be determined. We implemented this in ‘find eq u.m’, which effectively
uses the same process as find eq.m but would stack the free inputs along with the DC states
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and include them in the search for an equilibrium point. Using this approach, we were able to
find equilibrium points for the system and associated open-loop control to simulate the system
evolution under initial conditions close to the equilibrium and observe the behavior. Results are
presented below.

4.3 Closed-loop control

As the model presented in the paper is open-loop, we experimented with adding closed loop
controllers to regulate the system to a desirable equilibrium.

4.3.1 Automatic Voltage Regulation (AVR)

We implemented a simple AVR with an integral controller, where for the k’th generator, the field
current if,k is adjusted based on the difference between the voltage magnitude at its terminals
and reference magnitude with gain kavr,k:

i̇f,k = kavr,k(vref,k − ||vk||2)

4.3.2 Torque control

We implemented a PI controller for mechanical torque. Note that the proportional part re-
flects classical droop, and we added an integral term to return the frequency to nominal. This
distributed, local implementation of the integral controller is different than the centralized,
system-wide AGC used in practice; however, this suffices for our simulations with single gener-
ators.

φ̇k = kDroop,I,k(ω0 − ωg)
τm,k = kDroop,P,k(ω0 − ωg) + φk

4.3.3 Converter control

The two entries of the converter control input mk allow the converter controller to determine the
d and q components of the internal converter switching voltage and current separately. However
this additional degree of control freedom is not necessarily desirable, as the other loads and
generators in the network are defined in terms of their output power, rather than the d and q
components of the current and voltage.

To reduce the converter control input dimension, and have the control inputs more closely
reflect the control inputs of rotating machines, [1] introduces virtual oscillator control, based on
the virtual oscillator in [2]. The virtual oscillator control introduces a virtual rotating frequency
ωc,k and a virtual internal angle state θc,k, which, like the generator angle θg,k, is defined relative
to the rotating angle reference θ0 shared throughout the network. The state equation for θc,k is:
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θ̇c,k = ω0(ωc,k − 1), ∀k ∈ {1, . . . , nc} (DC–4)

The creation of the virtual internal angle state θc,k allows the converter voltage to be con-
trolled similarly to the generator voltage, with the new control input µk ∈ R[0,1] playing an
analogous role to the field current if,k in the rotating generators. Similarly, idc,k plays an analo-
gous role to the mechanical torque τm,k in a rotating generator. mk is defined in terms of a the
new input µk by the following equation:

mk = µkjr(θc,k), ∀k ∈ {1, . . . , nc} (Aux–6)

A key difference between the converter and generator is that the frequency ωc,k is a contro-
llable input for the user. This feature allows the converter to be controlled to be grid forming,
grid supporting, or grid following. For example, strictly controlling a converter with a virtual
oscillator rotating at ωgridforming creates a grid-forming device. The grid forming device will
allow θc,k, and therefore Pc,k and Qc,k, to adjust as necessary to maintain ωgridforming on the
network.

On the other end of the spectrum, controlling ωc,k to match the grid frequency exactly
(using a PLL) creates a grid-following device. For the grid following device, the output power
is determined by µk and θc,k, which should be constant because ωc,k = ωgrid.

In addition to these two modes, the converter can also be controlled to be grid supporting.
That is, to adjust it’s internal frequency based on the instantaneous power imbalance between
the power supplied to the converter (in the form of dc current) from the energy source (or sink),
and the power delivered to the grid. This power balance is represented in equation (DC–3).

The Curi paper proposes a control for ωc,k, based on the control in [2], titled “Matching
Control.” The principle behind Matching Control is to pin the converter frequency to the dc
bus voltage. The intuition behind this control is that the DC capacitor is the energy storage
element for converters, and vdc plays an analogous role to the rotational velocity ω of a rotating
machine. The stored energy in the capacitor is 1

2Cdcv
2
dc, and the stored energy in a rotating

machine is 1
2Mdcω

2 (M = the moment of inertia for the machine). This analogy is also evident
in the power balance equations (DC–3) and (DC–2).

The equation that defines the matching control is:

ωc,k = kc,k(vdc,k − v?dc,k) + ω0, ∀k ∈ {1, . . . , nc} (Aux–7)

v?dc,k is the DC voltage reference, analogous to the rotating frequency reference. kc,k is the
Matching Control parameter, which maps a DC voltage deviation to an internal virtual frequency
deviation. Note that centering the DC voltage deviation at v?dc,k, rather than at 0, provides
restoring (stabilizing) behavior. Furthermore, by tying ωc,k to vdc,k, the converter can provide
true inertia to the system.

With the virtual oscillator angle θc,k, the matching control input µc,k, and the matching
control parameters kmc,k and vdc,ref,k included, the list of states inputs and parameters for the
converters is adjusted to:
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Symbol Type Description Info.
θc,k State Rotor angle relative to an absolute reference frame θr θc,k ∈ S1
vdc,k State Voltage on the DC side in pu vdc,k ∈ R
ic,k State Converter AC current flowing in, in pu in dq framework ic,k ∈ R2

µk Input Averaged modulation signal for each dq framework mk ∈ R[0,1]

idc,k Input Current source from buck/boost that supplies the DC side idc,k ∈ R
Rc,k Parameter Series resistance of the output RL filter, in pu Rc,k = rc,k12×2

Lc,k Parameter Series inductance of the output RL filter, in pu Lc,k = `c,k12×2

Zc,k Parameter Series impedance of the output RL filter, in pu Zc,k = Rc,k + jω0Lc,k

Gdc,k Parameter Shunt conductance on the DC side Gdc,k ∈ R≥0

Cdc,k Parameter Shunt capacitance on the DC side Cdc,k ∈ R≥0

kmc,k Parameter Matching control parameter kmc,k ∈ R≥0

vdc,ref,k Parameter DC voltage reference vdc,ref,k ∈ R≥vk

Table 6: States, inputs and parameters of each converter k.

With these definitions, the controllers for the converters now closely reflect the controllers
for the synchronous generators. Thus, µk can be used for AVR to control the AC voltage at the
bus, and idc,k can be controlled using a PI droop controller to properly match the required real
power and restore the DC voltage to the set point.

5 Simulations

5.1 2 Buses: 1 Generator - 1 Load

We used this simulation for debugging and to verify expected behavior for a simple system. We
placed a generator at bus 1 and a load at bus 2. The load was modelled as constant impedance
to give P = 1 and Q = 0.05 at a voltage magnitude of 1. Please see the case data under
‘cases\debug2bus\’.

5.1.1 Finding equilibrium point

We first tested the open-loop system without any infinite bus by finding an equilibrium point
using the tool described above and perturbing the system slightly. We held the excitation current
as a fixed input at 1 p.u. and calculated that a mechanical torque of 1.0185 admitted a set of
equilibrium AC and DC states. We verified that the system stayed at this equilibrium with
a frequency of 1 p.u. We then applied initial conditions with all states at their equilibrium
value except we set generator frequency at ωg = 1.01 and observed the system converge to the
equilibrium as shown below (please see the file ‘main 2bus example.m‘ for code). Note that dq
components are specified in the global reference frame with frequency 1, so we observe that
though their magnitudes do not change much, each component oscillates while the generator
rotor frequency is different than the global reference frame frequency (Figure 3). As there is no
control, this convergence occurs because of damping in the generator swing equation.
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Figure 3: Results for 2 bus example with generator and load. As can be seen the frequency converges
back to their equilibrium at ωg = 1 due to the generator damping.

5.1.2 Using AVR

We implemented the AVR with gain kAVR = 1 without any turbine control to regulate the
generator bus voltage (bus 1) to 1 p.u. The results in Figure 4 show that the voltage is regulated
to 1 and the DC states of rotor velocity and field current approach asymptotes. 2 phenomena
are important to observe. First, because the rotor velocity is different from our global reference
frame ωo = 1 the generator angle relative to the global reference frame is changing. This is what
causes the sustained oscillations in the dq components of the generator current and voltages even
as the voltage magnitude is constant. Second, there is some noise in the the voltage magnitude
and real power. We think this is a numerical issue resulting as those quantities are non-linear
and the simulation uses a variable step-size. We implemented this simulation by setting the PI
gains on the turbine controller to zero.

5.1.3 PI controller for mechanical torque

The simulation including the PI turbine controller is shown in Figure 5. We used gains kDroop,I =
2 and kDroop,P = 20. In contrast to the simulation without turbine control, the generator
frequency returns to 1 and we see that the dq components of voltage and current reach steady
state values. The noise in voltage magnitude and power also dies out as the generator angle
converges to a steady value. It is worth noting that the d and q components of each voltage
and current effectively switch after the transient; e.g. initially the d components of voltage are
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Figure 4: 2 bus example with AVR on generator. There is an excess of mechanical torque, that increases
the speed of the rotor.

1 and they settle to close to zero. It’s not clear whether or not this represents any problem or
potential bug; we think this just represents the angle of the generator’s reference frame being
offset from the global reference frame.

5.2 2 Buses: 1 Converter - 1 Load

The purpose of this simulation was to debug and verify the behavior of a system with a converter
running model matching virtual oscillator control. The simulation includes a converter on bus
1 and a constant impedance load on bus 2. To evaluate the performance of the model matching
control, we compared the behavior of a controller running model matching control with the
performance of generator running grid forming control (also with an internal virtual oscillator).

5.2.1 Grid forming simulation

In this simulation, we set the model matching constant kc,k to zero. This set our internal
frequency at the constant value ωc,k = 1, regardless of the power draw and DC voltage. The
code for this test case can be found in ‘cases\debug2bus converters\’, and the relevant script is
main 2bus converters.m.
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Figure 5: Results for 2 bus with AVR and turbine controller on the generator.

The equilibrium point for a constant impedance load that draws P = 1 and Q = 0.05, is
obtained at v?dc = 2 with idc = 0.3507 and µ = 0.8497. We compared behaviours by increasing
the load by 20% (by decreasing the real part of the impedance by 20%). The results for the
simulation are shown in figure 6. As can be seen, the converter’s virtual angle remains constant
despite the change in the load, but the DC voltage and AC voltages drop.

5.2.2 Matching controller

For this simulation we repeat the same study (decreasing the real part of the impedance by
20%) for a converter running matching control. The matching constant is set to kc = 0.1. With
matching control, we expect the internal frequency of the virtual oscillator to be proportional to
the difference between the DC voltage and the reference DC voltage set-point. We set vdc,ref = 2.

The results of the matching control simulation are shown in figure 7. The DC voltage
converges to vdc = 1.6192, which corresponds to an internal frequency of:

ωc = 0.1(1.6192− 2) + 1 = 0.96192

Thus, the virtual rotating frequency of the converter deviates from the reference frame fre-
quency ω0. As showed in Figure 7, this results in oscillating d and q voltage and current
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Figure 6: Results for 2 bus case with 1 converter and 1 load, as a grid-forming device.

components. However the AC voltage magnitudes and output power decay in the predictable
decaying-exponential form. This demonstrates the grid is oscillating at ωc,1, not ω0. Thus, the
matching controller is functioning properly.

In future work, we intent to study the effect of traditional droop controllers, as well as other
types of grid-supporting controllers, with the matching controller.

6 Conclusions

In this report we discuss the model presented in [1]. The proposed model is coded and simulated
in Matlab to assess its behaviour and performance. We simulated two simpler study cases,
considering a two-bus system with 1 generator and 1 load, and a two-bus system with 1 converter
and 1 load.

We discussed the importance of algebraic equations, as a computational issue, instead of fast
differential equations in stiff models. In addition, we address the importance of finding initial
input setpoints and equilibrium points to properly set-up the simulation. We also discussed and
demonstrated the merits of Matching Control for inverters.

Simulations showed that the model proposed can be effectively used to simulate systems, if
the assumption considered in [1] are valid.
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Figure 7: Results for 2 bus case with 1 converter and 1 load, with matching constant kc = 0.1.

6.1 Lessons learned

Several lessons were learned in doing this project among we can highlight:

6.1.1 Divide and conquer

When implementing models that has many aspects and complexities, it is important to divide the
problem in smaller ones that can be easily understood and simulated properly. At the beginning
we attempt to run the entire model with many features, but the model didn’t converge to
anything reasonable. Due to this, we then decided to start up running simpler problems, that
eventually work out.

6.1.2 Theory and computational simulations

One of the key features of the studied paper is that it proposes a technique to simplify the model
based on a model order reduction theorem. We observed that in practice, to simulate the model,
the proposed reduction is necessary to actually run the model. Essentially, it is computationally
expensive to run stiff models, where time constants between ODEs differ on the order of 106 s,
and simplify to algebraic equations is a necessary process.
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6.1.3 Initial conditions and equilibrium points

Working with the model we realize that is not simple to initialize the models. We realize that by
arbitrarily choosing inputs may yield to non-existant equilibrium points, or unstable equilibria.
For this purpose, it is critical to implement scripts that properly handle the set points of the
inputs that can be used to then run effective simulations.

6.2 Team member contributions

• Rodrigo set-up the repository in Github and the final report in Overleaf. He wrote the
basis of the main code, on where it reads csv files and transform it to the required matrix
form, that are then added to a parameter struct. He also set-up the main ODE script
where stack all the vectors and wrote the functions for differential equations of buses, lines
and port variables. For the report, he wrote the introduction, the modelling framework,
the software implementation and the conclusion.

• Jonathan set-up and ran the simulations for the study case of generator and 1 load. He
wrote the functions for differential equations of loads and code to import load data from
csv files and the utility for importing MATPOWER network/line data, though this utility
was not used in our ultimate simulations. He wrote the code and scripts for both AVR
field current controller and PI torque controller adding a wrapper to the simulation for a
general feedback controller. He also wrote and set-up the scripts to find initial conditions
and equilibrium points for both AC and DC system. For the report, he wrote the discussion
of model and extensions and the simulations for the 1 generator and 1 load study case.

• Keith helped with the main code and wrote the differential equation functions for DC/AC
converters. This included implementing the Model-Matching Virtual Oscillator Control in
the converters. He set-up and ran the simulations for the converter test cases, with the
help of Rodrigo. In addition, he reformulated the main code so that the code can work
with any combination of converters, generators, and infinite buses, without adjusting the
code. For the report, he wrote the converter control section, and the converter simulations
section.

• Victoria wrote the differential equation function for the synchronous generators.
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