
CS189: Machine Learning Notes

1 Linear Regression

1.1 Introduction

(a) Machine learning explores the study and construc-
tion of algorithms that can learn from and make
predictions on data.

(b) Levels of abstraction in ML:

(a) Applications and Data: identify the problem
and the nature of the data.

(b) Model : choose the mathematical model that
best represents the pattern we wish to learn.

(c) Optimization Problem: cast the problem of
finding the right model into a concrete opti-
mization problem (e.g. minimize an objective
function).

(d) Optimization Algorithm: determine how to
solve the optimization problem.

1.2 Ordinary Least Squares

(a) In statistical modeling, regression is the statistical
process for estimating the relationships among vari-
ables. Ordinary least squares is the simplest tech-
nique to solve linear regression problems.

(b) The typical set up is as follows: given n d-
dimensional training samples, we form a matrix
X ∈ Rn×d, and output vector y ∈ Rn. We then
solve for the weights w ∈ Rd:

w = arg min
w
‖y −Xw‖22

A closed form solution is given by

w = (X>X)−1X>y

(c) Note that OLS can also fit parameters to nonlin-
ear models (e.g. ellipses and cubic functions). We
do this by augmenting (in addition to the raw fea-
tures) new arbitrary features to the data so that the
resulting models are still linear with respect to the
augmented features.

(d) Polynomials are an important class of features. By
Taylor’ Theorem, any sufficiently smooth function
can be approximated arbitrarily closely by a high
enough degree (univariate or multivariate) polyno-
mial. A downside is that a polynomial of degree at
most d in l dimensional space has O(ld) terms.

(e) Training error is the prediction error when the
model is evaluated on the training data, whereas
true error is the prediction error when the model
is evaluated on unseen data that comes from the true
underlying model.

(f) Polynomial features in linear regression illustrate
this distinction; using higher degree polynomial ap-
proximations can lead to reduced training error but
increased true error. This is a form of overfitting;
the model is too complex, and is fitting the noise.

1.3 Ridge Regression

(a) OLS becomes numerically unstable when the fea-
tures of the data are close to collinear. Using the
SVD of the feature matrix A = UΣV >, we find
(A>A)−1 = V Σ−2V >. This shows the singular val-
ues of (A>A)−1 are the squared inverse of the sin-
gular values of A, which results in extremely large
singular values when the singular values of A are
near zero.

(b) Ridge regression aims to resolve the numerical insta-
bility and overfitting problems of OLS by penalizing
the norm of w. Precisely, ridge regression is given
by the optimization problem

w = arg min
w
‖y −Xw‖22 + λ‖w‖22

As with least squares, we can find a closed-form so-
lution to this problem:

w = arg min
w
‖y −Xw‖22 + λ‖w‖22

= arg min
w

(y −Xw)>(y −Xw) + λw>w

= arg min
w
y>y − 2y>Xw + w>X>Xw + λw>w

We minimize by taking the first derivative and set-
ting it equal to 0:

∂

∂w

[
y>y − 2y>Xw + wTX>Xw + λw>w

]
= 0

−2X>y + 2X>Xw + 2λw = 0

X>Xw + λw = X>y

(X>X + λI)w = λy

So that w = (X>X + λI)−1X>y.

(c) Denoting the singular values of A as σi, the singular
values of (A>A + λI)−1 become 1/(σ2

i + λ2). The
initution is that we penalize the weights correspond-
ing to complex features that only serve to fine tune
the model and fit noise in the data.

1



1.4 Validation

(a) Hyperparameters are parameters whose values are
set prior to the learning process. A model hyper-
parameter determines the structure of the model
(e.g. degree of a polynomial) while an optimiza-
tion hyperparameter is aspect of the optimiza-
tion procedure (e.g. choice of λ in ridge regression).

(b) A general regression problem attempts to learn a
mapping f : Rd 7→ R from samples {(xi, yi)}ni=1,
where yi ≈ f(xi). That is, we find weights α where

fα(x) =

p∑
j=1

αj φ(x)︸︷︷︸
features

Define the mean squared error as

1

n

n∑
i=1

(fα(xi)− yi)2

and the true error as

E
[
(fα(x)− y)2

]
We cannot compute the true error, but we can esti-
mate it with validation data.

(c) The idea is to partition the training data into a train-
ing set, validation set, and test set. A simple way
to choose hyperparameters, then, is to choose the
configuration with the lowest validation error. Test
error should be used to compare results between dif-
ferent models or algorithms.

(d) Cross-validation is an alternative to having a ded-
icated validation set. k-fold cross-validation works
as follows:

(a) Shuffle the data and partition it into k blocks.

(b) For i = 1 to k, train the model on all blocks
except i and compute the validation error on
block i.

(c) Average the k validation errors to obatin an
estimate of the true error.

1.5 Probabilistic Interpretations

(a) Now we use statistical interpretations of regression
methods to see what we’ve done so far through a
different perspective.

(b) Consider the data samples we observe as random
variables with specific distributions (e.g. uniform,
normal, laplacian). We focus on Gaussians, as ran-
dom noise is often assumed to be normally dis-
tributed.

(c) Suppose we assume our observations are noisy, i.e.
yi = f(xi) + Ni where f is the true underlying
model and Ni is a random variable. If we assume
Ni ∼ N (0, σ2), then yi | xi ∼ N (f(xi), σ

2).

(d) We can use MLE to solve for the model h that max-
imizes the probability of the data. Going straight to
the log-likelihood, we have

h∗MLE = arg max
h

n∑
i=1

logP (yi | xi, h)

= arg max
h
−

(
n∑
i=1

(yi − h(xi))
2

2σ2

)
− n log

√
2πσ

= arg min
h

(
n∑
i=1

(yi − h(xi))
2

2σ2

)
+ n log

√
2πσ

= arg min
h

n∑
i=1

(yi − h(xi))
2

Taking h as some linear combination of features of
x, this is exactly the OLS setup. Thus, OLS is the
solution to MLE under a Gaussian noise model.

(e) If we apply MAP to the same setup, now we assume
h has a prior P (h) such that h ∼ N (h0, σ

2
hI). Going

straight to the log-likelihood, we have

h∗MAP = arg max
h

(
logP (h) +

n∑
i=1

logP (yi|xi, h)

)

= arg max
h
−
∑n
i=1(yi − h(xi))

2)

2σ2
− ‖h− h0‖

2
2

2σ2
h

= arg min
h

∑n
i=1(yi − h(xi))

2)

2σ2
+
‖h− h0‖22

2σ2
h

= arg min
h

n∑
i=1

(yi − h(xi))
2 +

σ2

σ2
h

‖h− h0‖22

Taking λ = σ2

σ2
h

, this is exactly the ridge regression

setup. Thus, MAP is a probabilistic justification for
adding the penalized term in ridge regression.

(f) For small data sets, MAP can produce a better or
worse solution than MLE, depending on the qual-
ity of the prior. With enough data, the prior term
becomes irrelevant.

1.6 Bias-Variance Tradeoff

(a) Now we form a theoretical metric to better under-
stand the phenomena of overfitting.

(b) Mathematically, we represent the metric as the ex-
pected squared error between the hypothesis h and
the observation Y = f(x) +N :

ε(x;h) = E
[
(h(x;D)− Y )2

]
2



where here we treat the x’s as fixed constants and
the data set D and Y as independent random vari-
ables. Note that

E[Y ] = E [f(x) +N ] = f(x) + E [N ] = f(x)

Var(Y ) = Var(f(x) +N) = Var(N)

(c) Decomposing the error metric, we have

ε(x;h)

= E
[
(h(x;D)− Y )2

]
= E

[
(h(x;D))2

]
+ E

[
Y 2
]
− 2E [h(x;D) · Y )]

=
(

Var(h(x;D)) + E [h(x;D)]
2
)

+
(
Var(Y ) + E[Y ]2

)
− 2E [h(x;D)] · E[Y ]

=
(
E [h(x;D)]

2 − 2E[h(x;D)] · E[Y ] + E[Y ]2
)

+ Var(h(x;D)) + Var(Y )

= (E [h(x;D)] + E[Y ])
2

+ Var(h(x;D)) + Var(Y )

= (E [h(x;D)] + f(x))
2

+ Var(h(x;D)) + Var(N)

The second line follows from E[X2] = Var(X) +
E[X]2 for any r.v. X. Also, if X and Y are indepen-
dent, then so are g1(X) and g2(Y ) for any functions
g1, g2. Hence h(x;D) and Y are independent.

(d) The final decomposition is called the bias-variance
decomposition. The first term is the square of the
bias of the method. The second term is the vari-
ance of the method. The last term is the irreducible
error.

(e) Underfitting is equivalent to high bias; overfitting
correlates to high variance. Training error reflects
bias but not variance, while test error reflects both.

(f) Adding good features will decrease the bias, but
adding a bad feature will rarely increase the bias.
However, adding a feature usually increases the vari-
ance, so a feature should only be added if it decreases
bias more than it increases variance.

1.7 Weighted Least Squares

(a) We now consider regression with non-identically dis-
tributed noise, and later, with dependent noise.
From this point forward it becomes easier to reason
from the probabilistic perspective.

(b) We first approach weighted least squares from an op-
timization perspective. The idea is to weight certain
data points more than others:

w = arg min
w

n∑
i=1

ωi(yi − φ(xi)
>w)2

i.e., the same as OLS except each data point is
weighted by ωi. In vector form,

w = arg min
w

(y −Xw)>Ω(y −Xw)

where the i-th row of X is φ(xi)
> and Ω =

diag(ω1, . . . , ωn). We expand this out to see an iden-
tical formulation to OLS, except the feature matrix
and observation matrix are scaled by Ω1/2. The so-
lution is then

w = (X>ΩX)−1X>Ωy

(c) Now we take a probabilistic approach via MLE. Our
model is

yi = φ(xi)
>w + Zi

where the Zi are independent Gaussians, but not
identically distributed: Zi ∼ N (0, σ2

i ). We can
make the Zi’s i.i.d. by scaling the data:

yi
σi

=
φ(xi)

>w

σi
+
Zi
σi

The MLE is then given by

arg min
w

 n∑
i=1

( yiσi
− φ(xi)

>w
σi

)2

2

+ n log
√

2π

This scaled MLE problem has the same setup as that
above, so that the solution is

w = (X>Σ−1Z X)−1X>Σ−1Z y

where

ΣZ =


σ2
1 0 . . . 0

0 σ2
2 . . . 0

...
...

. . .
...

0 0 . . . σ2
n


Hence the probabilistic perspective sets ωi = 1

σ2
i
. In-

tuitively, as the variance of the noise increases, we
“trust” that data point less.

(d) We have assumed the Zi’s are independent. If not
(i.e., there is colored noise) we can always represent
the noise vector Z as

Z = RU + µ

for some R ∈ Rn×n and µ ∈ Rn where Z,U ∈ Rn
are random vectors and each Ui ∼ N (0, 1) is i.i.d..
In this case, Z ∼ N (µ,ΣZ) where ΣZ = RR>.

(e) In the case µ = ~0, for example, we have y = Xw+Z
as before, except now Z is jointly Gaussian so that
y ∼ N (Xw,ΣZ). We reduce this back into an MLE
problem with i.i.d noise by premultiplying X and

y by Σ
−1/2
Z . The solution is as in the independent

case:

w = (X>Σ−1Z X)−1X>Σ−1Z y

3



1.8 MAP with colored noise

(a) Now we see how MAP deals with colored noise.
In deriving ridge regression via MAP, our prior as-
sumed that wi were i.i.d. univariate Gaussians. Now
we allow w ∼ N (µw,Σw), i.e., any multivariate
Gaussian. We can rewrite any multivariate Gaussian
as an affine transformation of a standard Gaussian:

w = Σ1/2
w v + µw

where v ∼ N (0, I). Plugging this reparameteriza-
tion into the approximation y ≈ Xw gives

XΣ1/2
w v ≈ y −Xµw

Applying MAP (i.e. ridge regression) as before with
these new coordinates gives

v = (Σ
>
2
w X

>XΣ
1
2
w + I)−1Σ

>
2
w X

>(y −Xµw)

Here we assume the variance of the data is normal-
ized, so that λ = 1. Converting back to w, we have

w = µw + Σ
1
2
w(Σ

>
2
w X

>XΣ
1
2
w + I)−1Σ

>
2
w X

>(y −Xµw)

= µw + (X>X + Σ−1w )−1X>(y −Xµw)

1.9 Total Least Squares

(a) Total least squares (TLS) arises when measurements
of both x and y contain noise. Geometrically, OLS
minimizizes the vertical distance between the fitted
model and data points, while TLS minimizes the
perpendicular distance.

(b) Attempting to differentiate the log-likelihood does
not produce a solution. Instead, we develop another
formulation that can be solved using the singular
value decomposition.

(c) Eckart-Young Theorem: Consider a matrix A ∈
Rn×d with SVD A = UΣV > =

∑d
i=1 σiuiv

>
i . Then

Ak =

k∑
i=1

σiuiv
>
i

is the closest rank k matrix to A in the Frobenius
norm.

(d) In the 1-dimensional case, our model is

(x+ ~e)w = y + ~f

where ~e and ~f are noise vectors for ~x and ~y, re-
spectively. We seek w that minimizes the Frobenius
norm of the augmented error matrix of ~e and ~f .

(e) Through some algebra, we arrive at

w = (X>X − σ2
2I)−1X>y

(f) In the general case, if the SVD of
[
X Y

]
is

[
X Y

]
=
[
UX UY

] [ΣX 0
0 ΣY

] [
VXX VXY
VY X VY Y

]>
then

w = −VXY V −1Y Y

1.10 Principal Component Analysis

(a) Principal Component Analysis (PCA) is an unsu-
pervised dimensionality reduction technique. Given
a matrix of data points, it finds one or more orthog-
onal directions that capture the largest amount of
variance in the data. Note that it is sensitive to the
relative scaling of the original variables.

(b) Let X ∈ Rn×d be the data matrix. We first shift the
sample mean of each column (i.e. feature) to zero:

X − 1

n
~1n~1

>
nX

because variance is defined relative to the mean of
the data.

(c) Recall the scalar projection of x ∈ Rd onto u ∈ Rd
where ‖u‖ = 1 is given by x>u. We wish to find
the direction u that maximizes the variance of the
projections of the data points onto u. The variance
of the projections is given by

n∑
i=1

(x>i u)2 = ‖Xu‖2

Hence we desire

arg max
‖u‖=1

‖Xu‖2 = arg max
‖u‖6=0

‖Xu‖2

‖u‖2

= arg max
‖u‖6=0

u>X>Xu

u>u

4



This is a Rayleigh quotient, so the maximum pos-
sible value is the largest eigenvalue of the matrix
X>X, which occurs when u is the corresponding
unit eigenvector.

(d) To find the k-th principal component, we first sub-
tract off the contributions of the previously com-
puted principal components u1, . . . , uk−1:

X̂k = X −
k−1∑
j=1

Xuju
>
j

Then we apply the same rule as before, subject to
the constraint that uk be orthogonal to u1, . . . , uk−1.
These vectors turn out to be the leading k eigenvec-
tors of X>X.

(e) Once the principal components are found, we can
use them as a new coordinate system. Each data
point xi ∈ Rd becomes a new vector x̂i ∈ Rk such
that [xi]j = x>i uj . In matrix form,

X̂ = XU

where U ∈ Rd×k is a matrix whose columns are the
principal components. The data becomes linearly
uncorrelated in the PCA coordinate system.

(f) Another derivation of PCA comes from a Gaus-
sian assumption. Let us assume the data are gen-
erated by a multivariate Gaussian distribution, i.e.
xi ∼ N (µ,Σ). Then the MLE of Σ is

Σ̂ =
1

n

n∑
i=1

(xi − µ̂)(xi − µ̂)> =
1

n
X>X

The contours of the multivariate Gaussian density
form ellipsoids, and the direction of largest vari-
ance is the eigenvector corresponding to the smallest
eigenvalue of Σ−1, which is the largest eigenvalue of
Σ. Now since the eigenvalues and eigenvectors of
Σ̂ and X>X are the same, we arrive at the same
solution.

(g) It can be shown that minimizing the distance be-
tween each xi and its projection onto u is equivalent
to maximizing the projected variance. Thus PCA
can be interpreted as minimizing the perpendicular
distance between the principal component subspace
and the data points. In this sense, it is doing the
same thing as total least squares.

(h) Eigenfaces represents a prime example of the use-
fulness of PCA. After subtracting the “mean face”
from various image samples, we can find the eigen-
vectors of the covariance matrix, which can be inter-
preted as eigenfaces. Remarkably, it does not take
many eigenfaces combined together to achieve a fair
approximation of most faces.

1.11 Canonical Correlation Analysis

(a) Shown below are various 2D scatterplots with cor-
responding Pearson correlation coeffcieints:

(b) Given two sets of random variables, if there are cor-
relations among the variables, CCA finds linear com-
binations of each set which have maximum correla-
tion with each other. CCA is invariant with respect
to scaling or general affine transformations of the
variables.

(c) For n data points stored in vectors X and Y with
means X̄ and Ȳ , define the sample Pearson Corre-
lation Coefficient as

ρ(X,Y ) =
(X − X̄)>(Y − Ȳ )√

(X − X̄)>(X − X̄) · (Y − Ȳ )>(Y − Ȳ )

(d) If X is a zero-mean random vector in Rd, its covari-
ance matrix is ΣXX = E[XX>]. One can estimate
the covariance matrix from samples x1, . . . , xn dis-
tributed i.i.d. according to X by collecting these
samples as rows of a matrix A, and then computing
Σ̂XX = 1

nA
>A.

(e) Formally, suppose we have zero-mean paired data
matrices X ∈ Rn×p and Y ∈ Rn×q. That is, we
have n paired data points in p and q-dimensional
spaces, respectively. We want the vectors u ∈ Rp
and v ∈ Rq (for X and Y respectively) that maxi-
mize the correlation of Xu and Y v. That is,

arg max
u,v

ρ(Xu, Y v) = arg max
u,v

u>X>Y v√
u>X>Xu · v>Y >Y v

(f) The first step is to whiten X and Y with Wx and
Wy, with the goal being to make the covariance ma-
trix of X and Y become the identity. We write the
SVD of X>X:

X>X = UxSxU
>
x = (UxS

1
2
x U
>
x )>(UxS

1
2
x U
>
x )

Observe that choosing Wx = UxS
− 1

2
x U>x makes it so

that (XWx)>(XWx) = I. (We do the same for Y ).
Since this is an affine transformation, the correlation
coefficient remains unchanged.

5



(g) Next, we choose matrices Dx and Dy to decorre-
late the whitened matrices Xw and Yw so that their
cross-covariance matrix becomes diagonal. Again,
write their SVD:

X>w Yw = USV >

Choosing Dx = U and Dy = V , we now have

(XwU)>(YwV ) = U>XwY V = U>(USV >)V = S

Again, since this is an affine transformation, the cor-
relation coefficient remains unchanged.

(h) Denoting the whitened and decorrelated X and Y
as Xd and Yd, the optimization problem is now

arg max
ud,vd

u>d Svd√
u>d ud · v>d vd

Without loss of generality, we force ud and vd to
be unit vectors so that the denominator disappears.
The numerator is a weighted sum of the singular val-
ues of X>w Y , which is maximized by extracting the
maximal singular value, i.e.

ud = vd =
[
1 0 · · · 0

]
Lastly, we have

u = WxDxud, v = WyDyvd

(i) We can continue this to find the k-dimensional sub-
spaces represented by U ∈ Rp×k and V ∈ Rq×k
such that the correlation of the projected data points
ρ(XU, Y V ) is maximized.

(j) An application of CCA is regression. Suppose we
computed CCA for some zero-mean X and Y . Let
Xc = XU and Yc = Y V . We can fit a linear model
relating the two: Yc ≈ XcA, which can be solved by
OLS. Through a series of transformations, we can
eventually form a matrix that gives the prediction
Ŷ from (new) zero mean observations X.

(k) In summary, CCA simultaneously finds projection
directions in the two spaces such that the projected
data have maximal correlation, whereas PCA defines
a new orthogonal coordinate system that optimally
describes variance in a single dataset.

2 Nonlinear Regression and Neural Nets

2.1 Nonlinear Least Squares

(a) All the models we’ve seen so far are linear in the
parameters we’re trying to learn. We consider the
optimization problem

arg min
θ

n∑
i=1

(yi − f(xi; θ))
2

except now, f is nonlinear. There is no closed-form
solution, but there are iterative methods.

(b) One such method is the Gauss-Newton algorithm.
At each iteration, this method linearly approximates
the objective function with a first-order Taylor ex-
pansion about the current iterate: F (θ) ≈ F (θ(k))+
J(θ(k))∆θ. Since this is linear in ∆θ, so we solve
a least-squares problem involving the linearized ob-
jective in order to compute the next iterate. The
process is as follows:

1. Initialize θ(0) with some guess

2. Repeat until convergence:

i. Compute Jacobian with respect to the cur-
rent iterate: J = J(θ(k))

ii. Compute ∆Y = Y − F (θ(k))

iii. Update θ(k+1) = θ(k) + (J>J)−1J>∆Y

2.2 Gradient Descent

(a) Gradient descent is an iterative optimization algo-
rithm for finding the minimum of a function. We
take steps proportional to the negative of the gra-
dient of the function at the current point. That is,
starting from an intial point x0, we repeat

xi+1 = xi − γi∇f(xi)

for some step size γ, which may be constant or de-
crease over iterations.

(b) The function ‖Ax − b‖2 is convex, but convergence
requires care and is exponential in ‖b‖2. For the
quadratic function 1

2‖Ax − b‖22, we show that we

have geometric convergence. In the case ‖b‖ = ~0,
we write

xi+1 = xi − γ(A>Axi −A>b) = (I − γA>A)xi

by induction,

xi+1 = (I − γA>A)i+1x0

Note that

‖(I − γA>A)kv‖2 ≤ (|λmax(I − γA>A)|)k‖v‖2

6



so that this state evolution is stable only if the eigen-
values of (I − γA>A) are bounded by (in absolute
value) 1.

For general b, after k steps of gradient descent with
some constant step size γ > 0,

f(xk)− f(x∗) ≤ α

2
β2k‖x0 − x∗‖22

where α = λmax(ATA) and β = max{|1 −
γλmax(ATA)|, |1 − γλmin(ATA)|}. If we choose γ
to make β as small as possible:

γ =
2

λmax(ATA) + λmin(ATA)

then the convergence rate can be written

f(xk)− f(x∗) ≤ α

2

(
Q− 1

Q+ 1

)2k

‖x0 − x∗‖22

where Q = λmax(ATA)/λmin(A>A), the condition
number of A>A.

2.3 Neural Networks

(a) An artificial neural network is a collection of con-
nected units (neurons) that can transmit a signal
from one to another. The signal is a real number,
and the output of each neuron is calculated by a
non-linear function of the sum of its input.

(b) Each neuron receives an input vector x and com-
putes z = w>x + b , where w is a vector of weights
and b is a bias term. The output is computed
a = g(z), where g is some activation function. Ex-
ample activation functions include:

• g(z) = 1
1+e−z (sigmoid)

• g(z) = max(z, 0) (ReLU)

• g(z) = ez−e−z

ez+e−z (tanh)

(c) Non-linearity gives neural networks their representa-
tional power, as the output we are trying to predict
often has a non-linear relationship with the inputs.
Without non-linear activation functions, the neural
network simply performs linear regression.

(d) ReLU activations are very common for intermedi-
ate layers of neural nets in practice. The universal
approximation theorem states that for every contin-
uous function f on a closed and bounded subset S,
there exists a neural network with one (finite) hid-
den layer that uniformly approximates f on S, under
mild assumptions on the activation function.

(e) Consider the following simple network:

Denote the input layer as layer 0, the first hidden

layer as layer 1, and so on. Let a
[`]
j denote the ac-

tivation of the jth unit of layer `. The first unit in
layer 1, for instance, performs

z
[1]
1 = W

[1]
1

>
x+ b

[1]
1 and a

[1]
1 = g(z

[1]
1 )

where W
[1]
1

>
is the first row of W [1], the weight ma-

trix of layer 1.

The output computation of layer 1 can be vectorized
as follows:

z
[1]
1
...

z
[1]
4


︸ ︷︷ ︸
z[1]∈R4

=


— W

[1]
1

>
—

...

— W
[1]
4

>
—


︸ ︷︷ ︸

W [1]∈R4×6

x1...
x6


︸ ︷︷ ︸
x∈R6

+


b
[1]
1
...

b
[1]
4


︸ ︷︷ ︸
b[1]∈R4

Next, a[1] = g(z[1]), which can be performed quickly
by parallel element-wise operations. The output of
layer 1, a[1], becomes the input to layer 2.

These operations can also be vectorized over train-
ing samples. Given n training samples x(i) ∈ R6,

define X =

 | |
x(1) · · · x(n)

| |

. Then we have

Z [1] =

 | |
z[1](1) · · · z[1](n)

| |

 = W [1]X + b[1]

Similarly, A[1] = g(Z [1]) is obtained by element-wise
operation g on the matrix Z [1]. This forward prop-
agation process continues until the output layer.

(f) The nonlinearities g are typically the same for all
layers except the last. This is because the output
layer may be doing regression (e.g. linear), binary
classification (e.g. sigmoid) or multiclass classifica-
tion (e.g. softmax).

(g) Neural networks with multiple hidden layers are
called deep neural networks. Such networks discover
complex features useful for predicting the output,
but are often difficult to interpret. Choosing an ap-
propriate architecture is very much trial-and-error.

7



2.4 Backpropagation

(a) Parameters (weights and biases) are learned by per-
forming gradient descent on a loss function. Back-
propagation is a method of calculating these gradi-
ents by using the chain rule to iteratively compute
gradients at each layer.

(b) It is important to randomly initialize the parame-
ters to small values (so that the gradients will be
different and the nuerons learn different features).

(c) The first step is the forward pass, as discussed ear-
lier. For a network with M layers, we define x = a[0]

and compute up to ŷ = a[M ], saving the intermedi-
ate results in the process. We measure the error
with a loss function L(ŷ, y), where y is the desired
output. For example, in regression we might use
L(ŷ, y) = 1

2‖ŷ − y‖
2
2.

(d) Now define

δ[`] =
∂L
∂z[`]

1. For output layer M , we have

δ[M ] =
∂L
∂z[M ]

2. For ` = M − 1, . . . , 1 we have

δ[`] = (W [`+1]>δ[`+1]) ◦ g′(z[`])

where ◦ denotes the elementwise product.

3. Finally, compute the gradients for layer ` as

∂L
∂W [`]

= δ[`]a[`−1]
>

∂L
∂b[`]

= δ[`]

We repeat the above procedure for all n training
samples, then apply the averaged gradient descent
update to each layer `:

W [`] = W [`] − γ

n

n∑
i=1

∂L(i)

∂W [`]

b[`] = b[`] − γ

n

n∑
i=1

∂L(i)

∂b[`]

where γ is the learning rate and L(i) is the loss for a
single instance. Note that the above procedure can
also be vectorized over training samples.

(e) Computing gradients over all n data points is costly.
In practice, the loss gradient is approximated over a
mini-batch of m data points. This method is called
stochastic gradient descent (SGD). In a single epoch,
backpropogation is run n/m times, with each run
updating parameters over the batch average.

(f) Training deep networks is an area of active research.
Topics of interest include parameter initialization,
regularization (e.g. dropout), choosing an appropri-
ate learning schedule, and speeding up convergence
(e.g. SGD with momentum).

3 Classification

3.1 LDA and QDA

(a) The task of classification differs from regression in
that the goal is to assign a data point to a discrete
number of classes instead of a continuous value.

(b) Given a training set {(xi, yi)}ni=1 of paired data
points xi ∈ Rd and discrete class label yi ∈
{1, . . . ,K}, the goal of a classifier is to assign an ar-
bitrary data point X to one of the K discrete classes.

(c) There are two main types of models that can be
used to train classifiers: generative and discrimina-
tive models. Generative models involve explicitly
forming:

1. A prior probability distribution over all classes
k ∈ {1, . . . ,K}:

P (k) = P (class = k)

2. A conditional probability distribution for each
class k:

fk(X) = f(X|class = k)

Using Bayes’ rule, the predicted class label k∗ is then

k∗ = arg max
k

P (class = k|X) = arg max
k

fk(X)P (k)

(d) Quadratic discriminant analysis (QDA) is a gener-
ative method in which the class conditional proba-
bility distributions are assumed to be independent
Gaussians: fk ∼ N (µk,Σk). The means and co-
variances µk,Σk are typically empirically estimated
using MLE (see appendix).

(e) The predicted class label k∗ is given by k∗ =
arg maxk fk(X)P (k). We have log fk(X)P (k)

= −1

2
(X − µk)>Σ−1k (X − µk)− 1

2
log |Σk|+ logP (k)

The decision boundary separating two classes is a
quadratic function of X, hence the name.

(f) If we assume that all classes have the same covari-
ance matrix Σ, we have linear discriminant analysis
(LDA). This time, Σ is empirically estimated using
all training samples.

8



(g) We have

log fk(X)P (k) = −1

2
(X − µk)>Σ−1(X − µk) + logP (k)

= X>Σ−1µk −
1

2
µ>k Σ−1µk + logP (k)

The decision boundary between class k and l is then

X>Σ−1(µk − µl)−
1

2
(µk + µl)

>Σ−1(µk − µl) + log
P (k)

P (l)

equated to zero. The decision boundary is now a
linear function of X. In the binary case (say k = 1,
l = 2), we classify X as 1 if X>w > c and 2 other-
wise, where

w = Σ−1(µ1 − µ2)

c =
1

2
(µ1 + µ2)>Σ−1(µ1 − µ2) + log

P (1)

P (2)

(h) We could also perform MLE by not using prior
terms. Notice that uniform priors reduce to MLE.

(i) An example of LDA (left) and QDA (right) bound-
aries is shown below.

3.2 Logistic Regression

(a) Generative models (e.g. QDA, LDA) can be ineffi-
cient in that they require estimation of a large num-
ber of parameters. Discriminative models, in con-
trast, attempt to model the posterior directly.

(b) We start with the case of binary classification, i.e.
yi ∈ {−1, 1}. We could apply standard linear regres-
sion to learn parameters w ∈ Rd+1 and classify x to
be sign(w>x). (Note that we add an extra feature
of 1 to x so as to absorb the bias term into w) We
could optimize w as follows:

arg min
w

n∑
i=1

‖yi − w>xi‖22 + λ‖w‖22

This method is called the 2-class least squares sup-
port vector machine (LS-SVM). However, it is easy
to construct examples where this method performs
very poorly.

(c) Logistic regression is a discriminative classification
technique with a probabilistic interpretation. This
time, we assume yi ∈ {0, 1}. We first convert the
linear function w>x into a probability by applying
the sigmoid function σ(z) = 1

1+e−z (shown below).

The decision rule for xi is then

ŷi =

{
1 if w>xi ≥ 0

0 otherwise

We optimize w by minimizing the cross-entropy, or
logistic, loss function:

L(w) =

n∑
i=1

yi ln

(
1

pi

)
+ (1− yi) ln

(
1

1− pi

)
where pi = σ(w>xi).

(d) One way of deriving the cross-entropy loss is via
MLE. For the dataset {(xi, yi)}ni=1, where each sam-
ple Yi ∼ Bernoulli(pi), we can write the likelihood
of a single data point as

P (Yi = yi) = pyii (1− pi)(1−yi)

Then arg maxw
∏n
i=1 P (Yi = yi) is equivalent to the

cross-entropy formulation above.

(e) The cross-entropy loss can also be derived from an
information-theoretic perspective. It minimizes the
Kullback-Leibler (KL) divergence, which measures
how much a distribution diverges from another.

(f) Now we turn to multiclass logistic regression. A
common representation is one-hot vector encoding.
If the ith training sample has class k, we use the
representation yi = ek, the kth canonical basis vec-
tor. Now we have a weight matrix W ∈ RK×d+1; to
classify a data point xi ∈ Rd+1, we compute Wxi
and choose the index of the largest component.

Each data point xi ∈ Rd+1 is given a score zk =
w>k xi, where w>k is the kth row of W . The gener-
alization of the logistic function for the multiclass
setting is the softmax function:

softmax(j, z1, . . . , zK) =
ezj∑K
k=1 e

zk

It outputs the probability that the corresponding
softmax distribution takes value j. The multiclass

9



loss function is

L(W ) = −
n∑
i=1

K∑
j=1

1{yi = j} ln

(
ew
>
j xi∑K

k=1 e
w>k xi

)

which, again, comes from MLE or KL divergences.

(g) The logistic regression loss function has no closed-
form solution, so it is typically minimized with SGD.
For binary classification, we have

∇wL(w) = −
n∑
i=1

(yi − pi)xi

3.3 Support Vector Machines
(a) Support Vector Machines (SVMs) are an attempt to

model decision boundaries directly without model-
ing any probabilities. Formally, we have the data
set {(xi, yi)}ni=1, where xi ∈ Rd and yi ∈ {−1, 1}.
The goal is to find a d − 1 dimensional hyperplane
decision boundary separating the two classes. They
are extensions of the simpler perceptron classifier.
They fix many of its shortcomings, namely finding
a best-fit boundary even if the data is not linearly
separable, and finding the “best” possible boundary.

(b) Hard-Margin SVMs maximize the margin, or the
minimum distance from the decision boundary to
any of the training points. Intuitively, maximizing
the margin allows the classifier to generalize better
to unseen data. The linear decision boundary is the
hyperplane H = {x | w>x = t}, where w is normal
to H. Note that the distance between hyperplanes

H1 : w>x = a and H2 : w>x = b is |a−b|‖w‖2 .

We wish to maximize the margin 2m
‖w‖2 . We can

freely rescale t, ‖w‖2,m, so we set m = 1. Maxi-
mizing the margin then corresponds to minimizing
‖w‖2, or more conveniently, 1

2‖w‖
2
2.

min
w,t

1

2
‖w‖22

s.t. yi(w
>xi − t) ≥ 1∀i

The hyperplane is completely determined by those
xi which lie nearest to it. These points are called
support vectors.

(c) The hard-margin SVM optimization problem has a
solution only if the data are linearly separable. In
addition, it is senstive to outliers. A soft-margin
SVM modifies the constraints from the hard-margin
SVM by allowing some points to violate the mar-
gin. It introduces slack variables ξi for each train-
ing point so that each xi need only be a distance of
1 − ξi from the hyperplane. The soft-margin SVM
optimization problem is

min
w,t,ξi

1

2
‖w‖22 + C

n∑
i=1

ξi

s.t. yi(w
>xi − t) ≥ 1− ξi ∀i

ξi ≥ 0 ∀i

Here C is a hyperparameter. A large C keeps ξi’s
small, but may lead to overfitting; a small C is less
sensitive to outliers, but may lead to underfitting.

(d) The soft-margin SVM is an example of an empirical
risk minimization (ERM) algorithm. Regularized
ERM algorithms are a family of learning methods
of the form

min
f

1

n

n∑
i=1

L(yi, f(xi)) + λ‖f‖2

(called Tikhonov regularization). It can be shown
that the soft-margin SVM optimization problem is
equivalent to

min
w,t

1

n

n∑
i=1

max(1− yi(w>xi − t), 0) + λ‖w‖22

for λ = 1
2Cn . Hence soft-margin SVM is regularized

empirical risk minimization with the hinge loss.

From this perspective, SVM is closely related to
other fundamental classification algorithms such as
regularized least squares and logistic regression. The
difference lies in the choice of loss function: square-
loss for LS and log-loss for logistic.

(e) The classical approach to solving SVMs involves
reducing the optimization problem to its dual, a
quadratic programming problem. While the primal
SVM finds two parallel bounding planes of max-
imum separation, the dual SVM finds the closest

10



points between two convex hulls. It can be shown
that the Lagrangian dual is given by

max
α

α>~1− 1

2
α>Gα

where Gij = yi(x
>
i xj)yj

s.t.

n∑
i=1

αiyi = 0∀i

0 ≤ αi ≤ C ∀i

The dual variables αi have the following meaning:

The primal values can be reconstructed as follows:

w =

n∑
i=1

αiyixi

t = mean(w>xi ∀i : 0 < αi < C)

ξi =

{
1− yi(w>xi − t) if αi = C

0 otherwise

(f) Multiclass SVM is typically done with multiple bi-
nary SVM classifiers between one of the labels and
the rest (one vs all), or between every pair of classes
(one vs one).

3.4 Kernel Methods

(a) Recall in regression we often augment the original
input x using a feature mapping φ(x). We can run
SVM on the transformed data points to learn a non-
linear decision boundary, which corresponds to a lin-
ear boundary in the augmented feature space.

(b) The dual SVM solution can be written entirely in
terms of inner products 〈xi, xj〉 = x>i xj . We can
replace each inner product with a kernel function:

k(xi, xj) = 〈φ(xi), φ(xj)〉

A valid kernel is a function k that can be expressed
as an inner product of feature maps φ. Equivalently,
k is a valid kernel if the corresponding kernel matrix
K, where Kij = k(xi, xj), is positive semi-definite.

(c) The power of kernels comes from the fact that we can
define a kernel k without an explicit representation
for φ. By Mercer’s theorem, an implicitly defined
function φ exists for any suitable k. This is useful
because k(xi, xj) may be inexpensive to calculate,
whereas the corresponding φ(xi), φ(xj) may be very
expensive to calculate.

(d) For example, the polynomial kernel k(xi, xj) =
(x>i xj + c)d corresponds to a feature mapping to

a
(
n+d
d

)
-dimensional feature space. Still, computing

k(xi, xj) takes only O(n) time even though the fea-
ture vectors lie in O(nd) dimensional space (where
n is the dimension of the original data).

(e) Another popular kernel is the Gaussian radial basis
function:

k(xi, xj) = exp

(
−‖xi − xj‖

2

2σ2

)
which corresponds to an infinite-dimensional feature
mapping φ. A larger σ results in a smoother bound-
ary (less variance).

(f) After training kernel SVM, a new point x can be
classified by computing the sign of

w>φ(x)− t =

(
n∑
i=1

αiyixi

)>
φ(x)− t

=

n∑
i=1

αiyi(x
>
i x)− t

We do this so as to avoid forming φ(x). So while
linear SVM needs only store the vector w for test-
ing, kernel SVM needs to store all support vectors
(xi for which αi > 0) for testing.

(g) The “kernel trick” can be applied to many machine
learning algorithms that only involve inner products
of training samples, including linear and ridge re-
gression, logistic regression, and PCA.

(h) For example, consider kernel ridge regression. Let
X ∈ Rn×d be the feature matrix such that the ith
row is φ(xi) ∈ Rd. We decompose w ∈ Rd into
X>w1 + w2, where w1 ∈ Rn and w2 ∈ N (X). The
solution is given by

w = X>(XX> + λI)−1y

which can be shown to be equivalent to the original
ridge regression solution. Predicting a new output
ŷ from x is computed with

ŷ = 〈φ(x), w〉 =
[
k(x1, x) . . . k(xn, x)

]>
(K + λI)−1y

where K is the corresponding kernel matrix (observe
we never actually need to go to the feature space).

(i) Kernelized methods are computationally preferable
if d� n, i.e., the number of features far exceeds the
number of training samples.

11



3.5 Nearest Neighbor Classifiers

(a) The k-nearest neighbors (kNN) classifier assumes
data points that are sufficiently close to one another
should be of the same class. To predict on a test
data point x, we compute the k nearest training data
points to x, where “closeness” is quantified in some
distance function (e.g. Euclidean distance). Then
we classify x by a majority vote of its neighbors.

(b) k-nearest neighbors can also be used to perform re-
gression; we instead return the (weighted) average
of the values of its k nearest neighbors.

(c) kNN can produce complex nonlinear decision bound-
aries for large k. For example, the decision boundary
for a 15-NN classifier with 2 classes is shown below.

(d) A kNN classifier does not need to be trained. How-
ever, for n training samples, the classifer requires
O(n) memory and kNN queries take O(n) time.

(e) k is a hyperparameter. It is intuitively clear that as
k increases, bias increases but variance decreases.

(f) kNN is among the simplest of all machine learning
algorithms, but can work very well for some applica-
tions given lots of training data. For example, it can
be used for label transfer in image understanding.

(g) kNN does not perform well for high-dimensional
data due to the “curse of dimensionality”. The
idea is that as dimensionality increases, the vol-
ume of the space increases so fast that the avail-
able data become sparse. For this reason, feature
selection and/or dimensionality reduction is usually
performed as a preprocessing step to kNN.

(h) Different distance functions are possible, such as any
of the Minkowski distances: d(x, z) = ‖x − z‖p in-
duced by the Lp norms.

(i) We can also kernelize kNN. For example, using Eu-
clidean distance, we have

d(φ(x), φ(z)) = ‖φ(x)− φ(z)‖2
=
√
k(x, x)− 2k(x, z) + k(z, z)

so that we can perform kNN in φ-space without ex-
plicitly representing φ.

3.6 Lasso

(a) Recall that the solution to SVM results in most
slack variables being zero (corresponding to the non-
support vectors). In general, when we penalize one
component of an optimization problem with non-
squared loss, this component will tend to be sparse.

(b) Lasso, or “least absolute shrinkage and selection op-
erator”, regression is given by the following opti-
mization problem:

w = arg min
w
‖y −Xw‖22 + λ‖w‖21

It is the same as ridge regression, except with a L1

penalty. The effect is to encourage sparsity in the so-
lution (i.e. many components of w are set to zero).
The objective is convex but not differentiable, so
there is no analytic solution.

(c) Just as ridge regression can be interpreted as MAP
for which the data has Gaussian priors, lasso can be
interpreted as MAP for which the data has Lapla-
cian priors. The Laplace distribution is sharply
peaked at zero.

(d) Lasso is important because it performs both feature
selection and regularization, as only the most rele-
vant features receive any weight.

3.7 Coordinate Descent

(a) Whereas SGD iteratively optimizes the value of
some objective L(w) for each sample in the train-
ing set, coordinate descent iteratively optimizes the
value of the objective for each feature.

(b) The algorithm is as follows: while w ∈ Rd has not
converged, pick some feature index i ≤ d and update
wi = arg minwi

L(w). In this way, it minimizes the
objective function with respect to each coordinate
direction at a time.

(c) Coordinate descent can be used to solve lasso regres-
sion, as it turns out there is a closed-form solution
for wi (keeping all other features fixed). In prac-
tice, it is also commonly used to solve the dual SVM
problem.

12



3.8 Decision Trees

(a) A decision tree is a flowchart-like structure in which
each internal node represents a “test” on a feature,
each branch represents the outcome of the test, and
each leaf node represents a class label.

(b) Decision tree learning is the problem of learning a
sequence of decision rules from data. The rules are
typically formulated as “is feature xi > v?”

Decision tree classifiers are often outperformed by
more modern classifiers, but are still in use due to
their interpretability. Also, combining many deci-
sion trees (ensembling) can work well in practice.

(c) Building a decision tree works by repeatedly picking
a split-feature, split-value pair. One way to choose
splits is inspired by information theory.

(d) The numerical surprise of observing that a random
variable X takes on value k is − logP (X = k). The
entropy of X, H(X), is defined as

H(X) = E[surprise]

= −
∑
k

P (X = k) logP (X = k)

It represents the information content of X, and is
higher when the distribution of its outcomes is closer
to uniform rather than biased to one outcome.

(e) We want to split on the feature most useful for dis-
criminating between the classes to be learned. This
can be done with information gain, which, for a par-
ticular feature, is the difference between the entropy
of the parent and the (weighted) average entropy of
its children given a split on that feature. The best
split is the one with the highest information gain.

(f) For continuous-valued features, we perform the
information-gain calculation over a range of thresh-
old values for each feature.

(g) For example, say we have n data points (xi, yi)
where yi is a class label at some node in the tree.
We calculate the entropy of the parent by taking

P (X = yi) = count(yi)
n . Then, for a particular split,

e.g., age < 20, we perform the split and calculate the
entropy of the two resulting child nodes similarly.

(h) Without a limit on the tree’s depth, the classifier can
perfectly (overfit) the training set provided no two
training points of different classes coincide. Meth-
ods of preventing overfitting include imposing depth
limits, information gain thresholds, and pruning.

(i) Ensemble methods involve constructing multiple de-
cision trees to avoid overfitting. In bagging, multiple
decision trees are constructed by repeatedly resam-
pling training data with replacement, and voting the
trees for a consensus prediction.

(j) Random forests, in addition to bagging, use a mod-
ified learning algorithm that selects, at each candi-
date split in the learning process, a random subset
of the features. This helps ensure the decision trees
remain diverse and uncorrelated. The size of the
random subsample of training points and the num-
ber of features per tree are hyperparameters.

(k) In boosting, which generalizes beyond decision trees,
we give weights to each of the simple classifiers
(e.g. trees in a random forest). AdaBoost (Adap-
tive Boosting) is a typical example; it is adaptive in
that it incrementally builds an ensemble by training
each new classifier to emphasize instances previously
mislabeled. In the binary case, the algorithm is:

1. Initialize weights of training samples: wi = 1
n .

2. For m = 1 to M :

i. Build a classifier Gm on training set with
replacement according to probabilities wi.

ii. Compute the weighted error

em =

∑
i mislabeled wi∑

i wi

iii. Set weight of classifier as

αm =
1

2
ln

(
1− em
em

)
iv. Re-weight training points (then normalize)

wi = wi ·


√

1−em
em

if mislabeled√
em

1−em otherwise

3.9 Convolutional Neural Networks

(a) Convolutional neural networks (CNNs) are deep,
feed-forward artificial neural networks with special
layer types (namely convolution and pooling).

13



(b) The first new idea is that of the convolutional layer.
The layer’s parameters consist of a set of learnable
filters (or kernels). Each layer of the output vol-
ume is an activation map formed by convolving a
kernel about the input. Convolving means sliding
the kernel across the pixels of the previous layer and
computing the sum of the elementwise products.

The kernels have a small receptive field, but always
extend through the full depth of the input volume.
For example, if the input volume is (w× h× d), the
kernel would be (k×k×d), where k is usually small.
The d resulting matrices are then combined to form
a (w×h×1) activation map. Stacking the activation
maps for all filters forms the full output volume of
the convolution layer.

(c) Kernels act as feature detectors from the original
input image. For example, in the table below, we
see the effects of convolution of with different filters.

Operation Kernel Result

Identity

0 0 0
0 1 0
0 0 0


Edge Detection

−1 −1 −1
−1 8 −1
−1 −1 −1


Sharpen

 0 −1 0
−1 5 −1

0 −1 0


Gaussian blur 1

16

1 2 1
2 4 2
1 2 1


(d) There are two important properties of convolution:

1. Parameter sharing: the filter values are shared
among all the pixels of the input.

2. Local connectivity: each neuron is (spatially)
connected to only a small region of the input
volume.

Both of these properties dramatically reduce the
number of parameters from say, a fully connected
layer.

(e) In practice, three parameters control the size of the
output volume:

1. Depth: the number of kernels used for the con-
volution operation, whose outputs are stacked
to form the output depth.

2. Stide: the number of pixels by which we slide
the kernels over the input volume. A larger
stride means the receptive fields overlap less
and the resulting output volume has smaller
spatial dimensions.

3. Zero-padding: padding the input volume with
zeros around the borders so that we can ap-
ply the kernel to edge entries. It preserves the
spatial size of the input.

(f) Multiple convolutional layers increase the effective
receptive field of each neuron. That is, as we go
downstream, the value of any single unit is informed
by an increasingly large patch of the original image.

(g) The next new idea is that of the pooling layer, whose
sole purpose is to downsample the input. Max pool-
ing is the most common approach: it partitions the
input into a set of non-overlapping rectangles and,
for each such sub-region, outputs the maximum. It
provides a form of translation invariance, because
the exact location of a feature is less important than
its rough location relative to other features.

It reduces the spatial size (but not depth) of the in-
put, thus reducing computation and reducing over-
fitting. It is common practice to insert a pooling
layer between successive convolutional layers.

(h) ReLU is typically applied element-wise to the out-
put of a convolution layer to increase non-linearity
without affecting the receptive fields.

(i) After several convolutional and max pooling lay-
ers, the high-level reasoning in the neural network
is done via fully connected layers. A final softmax
layer is typically used for classification purposes.

(j) Deep CNNs have won many computer vision chal-
lenges. There are a variety of architectural choices
on how convolutions, pooling, nonlinear activations,
and full connections can be composed. In recent
years, the trend has been increasingly deep net-
works.

(k) There are several methods that attempt to under-
stand what CNNs have learned:

• Direct visualization of filters, activations, and
optimal stimuli (only useful for earlier layers).

• Reconstruction by deconvolution: isolate an
activation and reconstruct the original image
based on that activation alone to see its effect.

• Activation maximization: generate an image
that maximizes the activation of the network.

• Saliency maps: find what locations in the im-
age make a neuron fire.

• Code inversion: given a feature representation,
determine the original image.

• Semantic Interpretation: interpret the activa-
tions semantically.

14



4 Unsupervised Learning

4.1 Dimensionality Reduction

(a) Unsupervised learning is the task of uncovering hid-
den structure from “unlabeled” data. Dimensional-
ity reduction is one such unsupervised method.

(b) One approach to dimensionality reduction is feature
selection, in which we remove features that we deem
to be irrelevant based on some criteria. For example,
the Lasso performs feature selection through the use
of L1 regularization.

(c) Another approach to dimensionality reduction is
learning latent features. This approach seeks to find
new features that are transformations of the given
features that represent the data well.

(d) Recall PCA: if we have a centered (i.e. zero column
mean) data matrix X ∈ Rn×d, the PCA decomposi-
tion amounts to finding the SVD X = UΣV >. Let
Uk, Vk denote the first k columns of U and V , re-
spectively, and Σk denote the upper left k × k part
of Σ. Then UkΣk ∈ Rn×k represents the first k prin-
cipal components of the data while the columns of
Vk represent the PCA axes. Further multiplying by
V >k gives the reconstruction of the original X.

At test time, V >k x projects a new data point x to
the k-dimensional latent PCA space, and VkV

>
k x re-

constructs it.

(e) Sometimes, it does not make sense to find orthogonal
directions that capture maximum variance, as PCA
does. Independent Components Analysis (ICA) in-
stead seeks directions that are statistically indepen-
dent, which is more suitable for some applications.

(f) Nonnegative Matrix Factorization (NMF) decom-
poses a non-negative data matrix X ∈ Rn×d into
X> = BH, where B and H are non-negative. NMF
generates factors with significantly reduced dimen-
sions: if B is d×p and H is p×n, then p can be sig-
nificantly less than both d and n. The kth row of X
is the sum of the columns of B, weighted according
to the entries in the kth column of H. Each column
of B can be interpreted as a meaningful feature. It
tends to produce sparser features than PCA.

(g) We have thus far discussed linear dimensional-
ity reduction methods that factor the data ma-
trix into a latent representation with a dictionary
for projecting the data. But they may fail to
capture inherent local geometric structures. At-
tempts to remedy this include kernel PCA and more
sophisiticated methods like Isometric Feature Map-
ping (IsoMap), Laplacian Eigenmaps, t-Distributed
Stochastic Neighbour Embedding (tSNE), etc.

4.2 Clustering
(a) The k-means algorithm is popular for its simplicity

and usefulness in exploratory data analysis. It works
as follows:

1. Initialize k cluster centers randomly.

2. Assign all data points to their nearest cluster
centers.

3. Re-estimate the k cluster centers.

4. Repeat until none of the assignments change.

Problems with k-means include sensitivity to seed
choice, difficulty in selecting k, and sensitivity to
outliers. Formally, it assumes isotropic convex clus-
ters. It is common practice to run k-means several
times with different initalizations, and pick the clus-
tering that gives the lowest distortion, or sum of
squared distances between each sample and cluster
centroid to which it has been assigned.

4.3 Generative Models
(a) An autoencoder neural network consists of an input

layer, an output layer of equal size to the input layer,
and one or more hidden layers with limited hidden
units connecting them. It attempts to reconstruct
its own inputs; that is, it tries to learn an approx-
imation to the identity function, so as to output ŷ
that is as close as possible to y. They can be used
in practice as a form of dimensionality reduction, or
to discover interesting structure about the data.

(b) Introduced in 2014, Generative adversarial networks
(GANs) are implemented as a system of two neural
networks contesting with each other in a zero-sum
game framework. GANs have been used to produce
samples of photorealistic images for the purposes of
generating new target imagery.

The discriminator network, in the case of images, is
a convolutional neural network that assigns a proba-
bility that an image is real. The generative network
is a kind of convolutional network that uses trans-
pose convolutions, called a deconvolutional network.
The idea is to backpropogate the discrimator to find
what parts of the image to change in order to yield
a greater probability of being real.

15



5 Mathematics Appendix
5.1 Vector Calculus

(a) Optimization is about finding extrema. The set of
inputs over which we’re optimizing X ⊆ Rd is called
the feasible set. If X is the entire domain of the
function being optimized, the problem is uncon-
strained. Otherwise the problem is constrained
and may be much harder to solve.

(b) Suppose f : Rd 7→ R. A point x is said to be a
local minimum (resp. local maximum) of f in X if
f(x) ≥ f(y) (resp. f(x) ≤ f(y)) for all y in some
neighborhood N ⊆ X that contains x.

(c) If f(x) ≤ f(y) for all y ∈ X , then x is a global
minimum of f in X (similarly for global maximum).

(d) The gradient of f : Rd 7→ R, denoted ∇f , is

∇f =


∂f
∂x1

...
∂f
∂xd


We have that −∇f points in the direction of steepest
descent from x.

(e) The Jacobian of f : Rn 7→ Rm is the matrix of
first-order partial derivatives:

Jf =


∂f1
∂x1

. . . ∂f1
∂x1

...
. . .

...
∂fm
∂x1

. . . ∂fm
∂xn


Note that if m = 1, ∇f = J>f .

(f) The Hessian matrix f : Rd 7→ R is the matrix of
second-order partial derivatives.

∇2f =


∂2f
∂x2

1
. . . ∂2f

∂x1∂xd

...
. . .

...
∂2f

∂xd∂x1
. . . ∂2f

∂x2
d


(g) A function f is convex if

λf(x1) + (1− λ)f(x2) ≥ f(λx1 + (1− λ)x2)

for any x1 and x2 in the domain of f and 0 ≤ λ ≤ 1.

(h) Equivalently, a function f is convex if its Hessian
matrix is positive semi-definite everywhere on the
domain of f .

(i) A convex set is a set S where

x1 ∈ S, x2 ∈ S =⇒ λx1 + (1− λ)x2 ∈ S,

where 0 ≤ λ ≤ 1. In words, if x1 and x2 are in S,
then everything “in between” x1 and x2 is also in S.

(j) The convex hull of a set S of points in Euclidean
space is the smallest convex set that contains S.

(k) A function f is convex if the set Sf = {(x, y) | x ∈
Rn, y ∈ R, y ≥ f(x)} is convex. The set Sf is called
the epigraph of the function f . It is all the points
that lie “above” the curve f .

(l) Convexity is useful for the following reason: if f is
convex in X , then any local minimum of f in X is
also a global minimum.

(m) For the OLS loss function f(x) = ‖Ax− y‖22,

∂f

∂x
= −2A>y + 2A>Ax

so that the Hessian is then

∂2f

∂x∂x>
= 2A>A

which is positive semi-definite.

(n) If f and g are convex, then

• αf + βg for α, β ≥ 0 is convex

• max(f, g) is convex

(o) Let A be a matrix and x,w be vectors. Common
gradients include:

• ∇x(w>x) = w

• ∇x(x>x) = 2x

• ∇x(x) = I

• ∇x(Ax) = A>

• ∇x(x>A) = A

• ∇x(x>Ax) = (A+A>)x

• ∇A(x>Ax) = ∂
∂A tr(xx>A) = (xx>)> = xx>

5.2 Linear Algebra

(a) An orthogonal matrix A is such that A−1 = A>.
They preserve 2-norms: ‖Ax‖2 = ‖x‖2.

(b) A symmetric matrix A is such that A = A>. They
have a convenient spectral decomposition: A =
QΛQ> where Q consists of an orthonormal basis of
Rn of eigenvectors of A and Λ = diag(λ1, . . . , λn).

(c) A symmetric matrix A is called positive semi-
definite if for all vectors x>Ax ≥ 0. This is equiv-
alent to having all nonnegative eigenvalues. If the
inequality is strict, A is called positive definite.

(d) A positive semi-definite matrix A has a unique
square root A1/2 that is also positive semi-definite.

16



(e) Let A ∈ Rm×n. Then A>A is symmetric and thus
orthogonally diagonalizable. Let {v1, . . . , vn} be an
orthonormal basis for Rn consisting of eigenvectors
of A>A, and λ1, . . . , λn be the associated eigenval-
ues. For 1 ≤ i ≤ n,

‖Avi‖2 = (Avi)
>Avi = v>i A

>Avi = v>i (λivi) = λi

The eigenvalues of A>A are nonnegative, so A>A
is positive semi-definite. The singular values of
A, denoted σ1, . . . , σn, are the square roots of the
eigenvalues of A>A arranged in decreasing order.

(f) Let A ∈ Rm×n(R) with singular values σ1 ≥ σ2 ≥
. . . ≥ σn. The singular value decomposition of
A is given by

A = UΣV >

where U ∈ Rm×m and V ∈ Rn×n are orthogonal
matrices and Σ = diag(σ1, . . . , σn).

(g) The columns of U are called the left-singular vec-
tors of A, and are unit eigenvectors of AA>. The
columns of V are called the right-singular vectors of
A, and are unit eigenvectors of A>A.

(h) Let A ∈ Rm×n with rank r and SVD A = UΣV >.
Let Σ† be the n×m matrix defined by

Σ†ij =

{
1
σi

if i = j ≤ r
0 otherwise

Then A† = V Σ†U>. A† is called the pseudoin-
verse of A.

(i) The norm of x ∈ Rn is ‖x‖ =
√
〈x, x〉. For all

x, y ∈ Rn, the following hold:

(a) ‖cx‖ = |c| · ‖x‖
(b) ‖x‖ ≥ 0 with equality iff x = ~0

(c) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ (triangle inequality)

(j) Some specific norms on Rn include

‖x‖1 =

n∑
i=1

|xi|

‖x‖2 =

√√√√ n∑
i=1

x2i

‖x‖p =

(
n∑
i=1

|xi|p
) 1

p

‖x‖∞ = max
1≤i≤n

|xi|

(k) The standard inner product on Rn is given by

〈x, y〉 = x>y

(l) The trace of a square matrix is the sum of its diag-
onal entries.

• tr(A+B) = tr(A) + tr(B)

• tr(αA) = αtr(A)

• tr(ABC) = tr(BCA) = tr(CAB)

(m) The Frobenius norm for a matrix A ∈ Rm×n is
given by

‖A‖F =
√

tr(A>A) =

√√√√ m∑
i=1

n∑
j=1

|Aij |2

(n) The scalar x>Ax for a symmetric matrix A is called
a quadratic form. The isocontours of f(x) =
x>Ax are ellipsoids such that the axes point in the
directions of the eigenvectors of A, and the radii
of these axes are proportional to the inverse square
roots of the corresponding eigenvalues.

(o) The Rayleigh quotient for a symmetric matrix A
is defined by

RA(x) =
x>Ax

x>x

For any x such that ‖x‖2 = 1,

λmin(A) ≤ x>Ax ≤ λmax(A)

with equality iff x is a corresponding eigenvector.
Consequently, for any x 6= ~0,

λmin(A) ≤ RA(x) ≤ λmax(A)

5.3 Probability
(a) Bayes’ Rule: If A and B are events, then

P (A|B) =
P (B|A)P (A)

P (B)

It is sometimes useful to omit the normalizing con-
stant and write

P (A|B) ∝ P (A)P (B|A)

P (A) is often referred to as the prior, P (A|B) as the
posterior, and P (B|A) as the likelihood.

(b) If {Ai}ni=1 is a set of events, disjoint or not, then

P

(⋃
i

Ai)

)
≤
∑
i

P (Ai)

This inequality is called the union bound.

(c) The variance of a random variable X is given by

Var(X) = E[X2]− E[X]2

We have

Var(αX + β) = α2Var(X)

17



(d) Covariance is a measure of the linear relationship
between two random variables.

Cov(X,Y ) = E[XY ]− E[X]E[Y ]

We have

• Cov(αX + βY, Z) = αCov(X,Z) + βCov(Y,Z)

• Cov(X,αY +βZ) = αCov(X,Y )+βCov(X,Z)

(e) Normalizing the covariance gives the Pearson cor-
relation coefficient:

ρ(X,Y ) =
Cov(X,Y )√

Var(X)Var(Y)

Correlation also measures the linear relationship be-
tween two variables, but unlike covariance always
lies between 1 and −1. Two variables are said to
be uncorrelated if Cov(X,Y ) = 0. If two variables
are independent, then they are uncorrelated, but
the converse does not hold in general. Note that
ρ(aX + b, cY + d) = ρ(X,Y ), i.e. it is invariant to
affine transformations.

(f) Multivariate distributions which give distributions
of random vectors:

X =

X1

...
Xn


Expectation of a random vector is expectation ap-
plied component-wise. The variance is generalized
by the covariance matrix Σ:

Σ = E[(X− E[X])(X− E[X])>]

Expliclitly,

Σ =


Var(X1) Cov(X1, X2) . . . Cov(X1, Xn)

Cov(X2, X1) Var(X2) . . . Cov(X2, Xn)
...

...
. . .

...
Cov(Xn, X1) Cov(Xn, X2) . . . Var(Xn)


Note that Σ is positive semi-definite.

(g) The cross-covariance matrix of random vectors X
and Y is given by

ΣXY = E[(X− E[X])(Y − E[Y])>]

(h) The multivariate Gaussian distribution, also
known as the normal distribution, is a continuous
distribution parameterized by its mean µ ∈ Rd and
covariance matrix Σ ∈ Rd×d, with PDF

P (x) =
1√

(2π)d det Σ
exp

(
−1

2
(x− µ)>Σ−1(x− µ)

)

We write X ∼ N (µ,Σ) to denote that X is normally
distributed with mean µ and variance Σ.

Given n i.i.d. samples x1, . . . , xn ∈ Rd from X ∼
N (µ,Σ), the log-likelihood is given by

−n
2

log |Σ| − 1

2

n∑
i=1

(xi − µ)>Σ−1(xi − µ) + constant

From this we derive the MLEs of µ and Σ:

µ̂ =
1

n

n∑
i=1

xi , Σ̂ =
1

n

n∑
i=1

(xi − µ̂)(xi − µ̂)>

(i) A probabalistic approach to parameter estimation is
maximum likelihood estimation (MLE). The
basic principle of MLE is to choose values that “ex-
plain” the data best by maximizing the probability
of the observed data seen as a function of the pa-
rameters θ. That is,

θ̂MLE = arg max
θ
L(θ)

where L is the likelihood function

L(θ) = P (x1, . . . , xn; θ)

If we assume the observations are i.i.d., then

P (x1, . . . , xn; θ) =

n∏
i=1

P (xi; θ)

We can take the log to get the log-likelihood:

logL(θ) =

n∑
i=1

logP (xi; θ)

Since log is a monotonically increasing function, any
maximizer of logL also maximizes L.

(j) A Bayesian way to fit parameters is through max-
imum a posteriori estimation (MAP). In this
approach, the parameters are assumed to be random
variables with a specified prior distribution P (θ).
Through Bayes’ rule and ignoring the normalizing
constant, we have

θ̂MAP = arg max
θ
P (θ)P (x1, . . . , xn|θ)

If we assume the observations are i.i.d., then we take
the log to get

θ̂MAP = arg max
θ

(
logP (θ) +

n∑
i=1

logP (xi|θ)

)

18


