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1 Thevenin Equivalent and Max Power Transfer Review

To develop the swing equation and the equal area criterion we need both a mechanical and an electrical
model for the generator. We will cover the mechanical model in the next section. For the electrical model,
we will use the Thevenin Equivalent generator model which has an internal EMF voltage source E, and an
inductive output impedance X that models the inductance of the motor coils:

For the equal area criterion analysis, we attach the Thevenin equivalent generator model to an infinite
bus (constant AC voltage source).The infinite bus voltage source Vs serves as the voltage reference and thus
̸ Vs = 0. The frequency of the infinite bus voltage ωs is constant. δ is the angle of the EMF voltage source
of the machine, relative to the infinite bus.
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For constant voltage magnitude, the real power tranmsitted across a purely inductive line is a function
of δ:

Pe(δ) =
EV

X
sin(δ) (1)

Figure 1: Real power delivered by a lossless line versus voltage angle across the line

When the system is operating at steady state (what we’ve analyzed up to this point in the class), the
power injected into the rotor by the prime mover and the power extracted from the rotor in the form of
electric power (and machine losses) are equal. The machine rotates at a constant rotational velocity that
matches the grid frequency, and angle of the machine is constant in time.

When a disturbance occurs, such as a change in the load, a change in the power from the generator’s
power prime mover, or a change in the network, the system is not at steady state. The power injected
into the rotor by the prime mover and the power extracted from the rotor are not equal, and the machines
rotational velocity and angle will be transient (not constant in time).

2 The Swing Equation

The swing equation relates the mechanical power and rotations (oscillations in space) to the electrical power
and oscillations in time. It describes how the net power into the machine’s rotor determines the angle of the
rotor. The equations of motion are differential equations (e.g. F = Ma), thus the swing equation will be a
differential equation.

The swing equation is derived from the following variables, (though these variables are not what are used
in the canonical form):

• τm: The mechanical torque (rotational force) applied to the rotor by the prime mover

• τD: The dampening torque

• τe: The mechanical torque applied to the rotor due to the electric power that is extracted from the
machine

• τnet = τm − τe − τD: the net torque (force) applied to the rotor

• J : the rotational moment of inertia of the rotor

• θ: the absolute angle of the rotor (in a non-rotating reference frame)

• α: the angular acceleration of the rotor, α = θ̈

Newton’s equation for rotational motion states that:

τnet = Jα (2)

This equation is the basis for the swing equation. In addition, we define the following variables:
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• δ: the phase shift of the rotor (angle of the rotor in the rotating reference frame)

• ω: the rotational velocity of the rotor, ω = δ̇

• ωs: the angle reference rotational velocity

The first modification is describing α in terms of δ rather than θ We prefer δ because δ is also the
electrical angle, which determines the real power that is extracted from the machine according to Eqn. (1).
The equation relating the angle θ in the stationary reference frame to the angle δ in the rotating reference
frame is:

θ = ωst+ δ.

Unlike δ, θ, ω, and α, ωs is a constant and not a function of time. By taking the derivative and second
derivative of both sides we get:

θ̇ = ωs + δ̇ (3)

θ̈ = δ̈ (4)

We see that θ̈ = δ̈ = α. Thus, no modifications are necessary to define Eqn. (2) in terms of δ.
Note: δ is both the mechanical/rotational angle and the electrical angle of the EMF voltage source E.

Understanding this equivalence between the angle of the rotor in space and the angle of the voltage wave in
time is critical to understanding the swing equation and the equal area criterion.

The second modification describes the swing equation in terms of the power injections, rather than the
torques.

• Pm: The power from the mechanical torque (rotational force) applied to the rotor by the prime mover

• PD: The power from the dampening torque

• Pe: The power from the mechanical torque applied to the rotor due to the electric power that is
extracted from the machine

• Pnet = Pm − Pe − PD: the net power transferred to the rotor

Multiplying both sides of Eqn. (2) by ω and using the equation for rotational power P = τω gives:

Pnet = Jωδ̈ (5)

From this equation it is evident that the swing equation models how the angle of the machine changes with
time due to the net power that is delivered to the rotor Pnet—if Pnet > 0 the rotor will accelerate. If Pnet < 0
the rotor will decelerate.

The third modification makes the approximation that ω ≈ ωs. While it is not necessary to set ω = ωs,
it makes the analysis easier. In addition, we group the constants together, and convert the equation to per

unit (power base = SB). Defining H =
1
2Jω

2
s

SB
(the “normalized inertia constant”):

Pnet =
2H

ωs
δ̈ (6)

The swing equation is a differential equation. The equilibrium point δ∗ of Eqn. (6) is given by the point
at which the net power delivered to the rotor Pnet is zero. Ignoring PD, δ∗ is determined by the intersection
of Pm and the function for electrical power Pe(δ)—as Pm changes, the equilibrium point will change.

Q. Is the system at rest when δ = δ∗, Pnet = 0, and δ̇(t) = 0?
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Q. Is the system at rest when δ = δ∗, Pnet = 0, and δ̇(t) ̸= 0?

3 (Simplified) Rotor Transient Stability Analysis

Rotor transient stability analysis describes the position of the rotor after a (transient) disturbance affects
the system, based on the net power exerted on the rotor. In order to simplify the transient stability analysis,
power system engineers often make the following assumptions:

• PD = 0, and therefore Pnet = Pm−Pe. If the oscillations around δ∗ are stable when we ignore PD, then
we know that the system will settle back to δ∗ if PD is included because PD is a purely dissapative
force.

• The transient disturbance is either a sudden change in Pm or a sudden change in the Pe(δ) curve. The
sudden change will change the equilibrium angle δ∗ and result in Pnet ̸= 0.

• Pm is constant throughout the duration of the transient, while Pe adjusts instantaneously according
to Eqn. (1).

Q. Why is it okay to assume that mechanical power extracted from the rotor is constant, while electrical
power extracted from the rotor is not constant?

To understand rotor transient stability analysis, we return to Fig. 1, pasted below for convenience:

Q. Right after the sudden increase in Pm, is δ greater than, less than, or equal to δ∗?
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Q. Right after the sudden increase in Pm, which direction does Pnet initially push δ? (To the right or to the
left in Fig. 1)

Q. What will happen when δ reaches δ∗? Will it stop or keep going?

Q. When δ has passed δ∗, which direction does Pnet push δ? (To the right or to the left)

The restorative force described by the questions above is the reason that synchronous machines are robust
to small transient disturbances, and are the key idea behind the equal area criterion.

4 The Equal Area Criterion

The equal area criterion is a transient stability criterion for a single machine, modeled using the swing
equation, attached to an infinite bus (or another generator). The equal area criterion determines if the
system will return to the same operating point after a disturbance, or slip a pole and diverge to a different
operating point.
The equal area criterion:

The area that corresponds to the acceleration of the rotor on the δ–Pe graph is equal to the area that
corresponds to the deceleration.

This phenomenon is described well by the figure from page 830 of the classic Power System Stability and
Control text by Kundur. In order to understand this figure, we need to define some new variables:

• Pm0 is the mechanical power applied before the step change in mechanical power.

• Pm1 is the mechanical power applied after the step change in mechanical power.

• δ0 is the stable operating angle before the step change in mechanical power.

• δ1 is the stable operating angle after the step change in mechanical power.

• δm is the maximum angle that the rotor will swing to, according to the equal area criterion.

• δL is the angle at which Pe = Pm1 on the right side of the δ–Pe curve.
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Q. Why is δL important?

Q. Intuitively, why does the equal area criterion hold?

One of the things that is initially surprising about the equal area criterion is that the x axis for the area
is the angle δ, rather than time t. You can integrate the net power injection over the angle just as well as
you can integrate the net power injection over time, though, as demonstrated by the equal area criterion
derivation in Appendix A. The equal area criterion uses the angle δ for the x axis because equation (1)
expresses the electrical power Pe in terms of δ, and because using the angle δ for the x axis provides useful
intuition.

Note that the figure from Kundur does not include the affects of dampening. If the oscillations are stable
without dampening, then including dampening in the system will reduce the magnitude of each oscillation
until the system is at rest at the steady state equilibrium. The dampened oscillations are classic stable
dynamic system behavior.

However, if the initial perturbation is too large, the rotor angle may go past the point where Pe and
Pm intersect and the restorative force switches to a divergent force. The rotor, which had previously been
slowing down, will start to speed up again, away from δ∗. In the best case scenario, the rotor will settle
into a new stable equilibrium. This is called slipping a pole. Even if a new stable equilibrium is found, the
rotor will move violently in a way that it was not designed to. In the worst case scenario the rotor will keep
accelerating until it breaks.
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In summary, the combination of the swing equation and the equation for Pe(δ) creates a restorative force
as long as δ < δL. If δ > δL then the restorative force becomes a divergent force and the generator slips a pole
and bad things happen. If, for a given disturbance, there is not enough deceleration area available to the left
of δL, then the system is in an unstable operating state. So you know you are going to slip a pole before you
actually slip a pole. This phenomenon can be described well by the Todd Snider lyric from the song 45 Miles:

“Now some of you who that have been in a car accident can testify to the fact that there is a brief moment
between realizing you’re going to crash your car... and crashing your car.”

There are three types of disturbances commonly encountered in equal area criterion analysis:

1. a sudden change in Pm,

2. a line fault for which the Pe temporarily goes to zero, before the fault is cleared, and

3. a reconfiguration of the network, which changes the Pe(δ) curve.

The Kundur image above is an example of the first kind of disturbance, in which Pm changes. In disturbances
(2) and (3), it is usually assumed that Pm does not change.

Q. What does the δ–Pe curve look like for disturbances of the types (2) and (3)?
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A Equal Area Criterion Derivation

Note: you do not have to understand this derivation of the equal area criterion for this class. I am just
putting it here for students who might be interested.

To derive the equal area criterion, we integrate the swing equation (6) over the angle δ from the initial
angle δ0 to the maximum swing angle δm:

∫ δm

δ0

2H

ωs

d2δ

dt2
dδ =

∫ δm

δ0

(Pm − Pe)dδ (7)

In order to evaluate the integral on the left hand side, we set u =
[
dδ
dt

]2
, and (taking advantage of Liebniz

derivative notation) observe that

du

dδ
= 2

[dδ
dt

] d

dδ

(dδ
dt

)
= 2

[dδ
dt

]( d2δ

dδdt

)
= 2

(d2δ
dt2

)
,

and du = 2
(d2δ
dt2

)
dδ.

Substituting du into (7), we get

H

ωs

∫ δm

δ0

du =

∫ δm

δ0

(Pm − Pe)dδ (8)

H

ωs
u

∣∣∣∣δm
δ0

=

∫ δm

δ0

(Pm − Pe)dδ. (9)

u =
[
dδ
dt

]2
is the squared rate of change of δ. We know that δ is not moving at the moment it starts, δ0, and

at the moment at which it switches directions, δm. Therefore, the integral on the left hand side of (9) will
be equal to zero. This leaves ∫ δm

δ0

(Pm − Pe)dδ = 0.

Splitting the integral at δ1, we get the equal area criterion:∫ δ1

δ0

(Pm − Pe)dδ =

∫ δm

δ1

(Pm − Pe)dδ. (10)
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