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1 Series Inductance in transmission Lines

Inductance L of a circuit element is defined as the ratio of the flux linkage λ over all space to the current
I through the element, L := λ

I . Thus, inductance describes the ratio of the change in flux linkage to the

change in the current, L = dλ
di . When we combine the definition of inductance with Faraday’s law, V = dλ

dt ,
we get the circuit equation for inductors:

V = L
di

dt
. (1)

For power systems, the equation for inductance L in terms of the distance between the two wires D, and

the adjusted radius of the wire, r′ = e
−1
4 r, is:

L =
dλ

di
= 2× 10−7 ln

D

r′
. (2)

This equation is derived in A.

Q. Annotate the description of the derivation of Eqn. (2) in Appendix A with three figures.

Q. Where did the 2 ∗ 10−7 come from in equation 2? :
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Q. Where the natural log (ln) come from? :

Q. Where did the D come from? Why is it in the numerator of the ln? :

Q. Where did the r′ come from? Why is it in the denominator of the ln? :

2 More than Two Conductors

If we have more than two conductors (total), the solution approach is to represent the set of conductors as
a single (fictitious) sending conductor and a single (fictitious) return conductor. This problem-reduction is
done by finding the average flux linkage. The average flux linkage can be calculated by using the average
of logarithms of distances. We use the geometric mean of distances (rather than the arithmetic mean of
distances) because we are interested in the average of logarithms of distance. For example, 1

3 (ln(D1) +

ln(D2) + ln(D3)) =
1
3 ln(D1D2D3) = ln((D1D2D3)

1
3 ) = lnDeq if Deq is the geometric mean of D1, D2, and

D3. The geometric mean is used both in situations in which there is more than one conductor for a given
phase, and in situations in which there is more than one return line (i.e. three phase power).

The geometric mean equation is:

Dmean =
( N∏

n=1

M∏
m=1

Dnm

) 1
NM

(3)

Geometric Mean Radius (GMR): In situations in which the current of a given wire is carried by multiple
conductors, we use DGMR to give an “effective radius” for a single wire that would behave equivalently to
the wire batch. For DGMR, N = M in equation 3 is the number of wires in the wire batch. DGMR takes the
place of r′ in equation 2.

Geometric Mean Distance (GMD): In situations with more than two wires carrying current (i.e. three
phases), for each wire we use DGMD to given an “effective distance” between the wire of interest and a
fictitious second wire that behaves equivalently to the batch of other wires. For DGMD, N in equation 3 is
the number of wires in the sending conductor batch (could be 1), and M in equation 3 is the number of
return conductors. DGMD takes the place of D in equation 2.

Using DGMR and DGMD, the equation for the inductance of a given wire (phase) is:

L =
λ

I
= 2× 10−7 ln

DGMD

DGMR
(4)
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Q. Consider a 3 phase wire configuration in which the three phases are arranged in an equilateral triangle
configuration, distance D apart. What is the geometric mean of the distances between a single phase and the
other two phases?

In practice, GMR and GMD values are provided for commonly used bundles.
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A Derivation of Series Inductance in Transmission Lines

To calculate inductance for a transmission line we must determine the relationship between the current
flowing through the line and the flux linkage over all space. Sounds easy. Fortunately, we can use the
geometry of the problem and some assumptions to simplify the calculation. The assumptions we use are:

1. The line is infinitely long, and thus end-affects can be neglected and the problem can be addressed in
two dimensions rather than three.

2. The current is distributed evenly in the wire (skin-affects are neglected).

3. The permeabilities of the wire, air, and all other materials present are equal to the permeability of free
space: µ ≈ µ0 = 4π × 10−7 H/m.

The magnetic field strength around a given loop is determined by Iencl, the current that is enclosed by
the loop (Ampere’s law): ∮

Htan dl = Iencl (5)

The flux density is determined by the product of the magnetic permeability of the air and the magnetic
field strength. Flux linkage is a geometric property that describes how much flux is “linked” to 1 A of
current flowing through a given wire. For a single wire without any coils, the flux linkage is calculated by
taking the integral of the flux density over all space. “All space” can be simplified by assuming that the
line is infinitely long and focusing on per-unit-length quantities, which allows us to just integrate over a
cross-sectional plane. The cross-sectional plane can be further simplified using the radial symmetry—we can
integrate the flux density over just the radial distance from the wire (one dimension). Thus, to calculate
inductance for a single wire, we have to integrate the flux linkage between two radial distances, D1 and D2:

λ1,2 =

∫ D2

D1

µI

2πx
dx (6)

Because inductance is the relationship between line current and flux linkage over all space, we want λ0,∞.
Note, as we get close to 0, we move inside the wire, and then the enclosed current I starts to change (I goes
to 0 as x goes to zero). Therefore it makes sense to break the integral up into the sum of two integrals, one
from 0 to the radius r of the conductor, and one from r to ∞. Because we assumed that current is constant
in the wire, we can actually combine the two integrals by adjusting where the outside-the-wire integral starts

from. Instead of starting the integral at r, we start the integral at r′. r′ = e
−1
4 r = 0.7788r—it’s a little less

than r, so the integral starting from r′ will be a bit bigger than the integral starting at r. The integral is
bigger because we are now including the flux density that is inside the wire in the outside-the-wire integral.

The outside-the-wire integral is integrated from r′ to infinity. And beyond. Fortunately, we can exploit
the symmetry again. Transmission lines will always have a return path—current flows in loops so the
current that goes out must always come back. The magnetic field strength is given by Iencl, the current that
is enclosed by a given loop in space (this “loop in space” is different than the loop that is created by the
current-carrying wire). Exploiting symmetry, we choose the loop in space to be a ring of radius ρ around the
wire that we are calculating inductance for. As ρ expands, eventually, the ring will also enclose the return
path wire. Once the ring includes both the transmission wire and its return path, Iencl = 0. If D is the
distance between the transmission wire and its return path wire, by equation 5, the integral of the magnetic
field around a ρ > D ring will be zero. Thus, for ρ > D, there will not be any flux linked to the current in
the wire.

Recall that the inductance for a transmission line is given by the relationship between the current flowing
in the line and the flux linkage over all space. Using symmetry, we simplified this relationship to the integral
of flux density from a radial distance of 0 to ∞. Then, in the previous two paragraphs, we further simplified
the integral by determining two new bounds for integration. Instead of integrating the flux density from a
radial distance of 0 to ∞, we calculate the flux linkage by integrating the flux density from a radial distance
of r′ to D:

λ := λ0,∞ =

∫ D

r′

µ0I

2πx
dx =

µ0I

2π
ln

D

r′
= 2× 10−7I ln

D

r′
(7)
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The equation for inductance L is then:

L =
λ

I
= 2× 10−7 ln

D

r′
(8)

This is the equation that you need to know for this class.
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