Introduction to Electric Power Systems
Lecture 4
Unbalanced 3-phase Circuits
and Symmetrical Components
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1 Unbalanced 3-phase Voltage and Current

Before introducing symmetrical components, we will fist look at unbalanced 3-phase circuits. Up to this
point, we have considered 3-phase balanced systems. In practice, 3-phase systems are unbalanced. Often,
for transmission networks, this imbalance is small and the balanced circuit approximation is appropriate.
However, the balanced circuit approximation is not always appropriate. In particular, distribution networks
often have imbalances that are significant enough to warrant full 3-phase analysis.

If a 3-phase set of voltage or current phasors is unbalanced, the phasor magnitudes will not be equal and /or
the phasors will not be separated by 120°. The unbalance can arise from an unbalanced generator/voltage
source, unbalanced transmission line impedance, or unbalanced loads.

Ohm’s law for a three phase circuit is the vector-valued equation

Va Ia
VB | =ZaBc | I |,
Ve Ic

where Z4pc is a 3x3 matrix.
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Figure 1: Wye Circuit with Neutral Wire with Impedance



Consider the circuit with the Wye-connected load and neutral line impedance in Fig. 1. Each arm has a
constant impedance load Zy, and the neutral line impedance is Z. While the load impedances are balanced,
the circuit will be unbalanced if the voltages applied are unbalanced. Note, the voltages are phase-to-ground,
rather than phase-to-neutral. The vector-valued Ohm’s law can be constructed by applying Ohm’s law to
each individual phase:

Vag=ZyIa+ 2ZnI,
=ZyvIa+Zy(Ia+1Ip+1c)
= (Zy + ZN)IA + ZnIg + ZnIc

Combining the Ohm’s law equations for each phase gives

Vg (Zy + Zn) Zn Zn Iy
Vi, | = Zn (Zy + Zx) Zn In | (1)
Veg Zn ZN (Zy + Zn) Ic

The off-diagonal terms of the impedance matrix are referred to as “coupling impedances.” Later in the
course we will learn that additional inductive and capacitive coupling impedances arise from the physics of
the transmission lines.

2 Symmetrical Components

The three phasors of an unbalanced 3-phase signal require six pieces of information, the magnitude and angle
of each phase. Symmetrical components is another way of representing the three phasors that constitute a
3-phase voltage or current signal, instead providing the magnitude and angle of the “positive,” “negative,”
and “zero” sequence components. Both the three-phasor representation and the symmetrical components
or “sequence” representation of a 3-phase signal have six pieces of information: three magnitudes and three
phase-shifts.

Symmetrical components are ubiquitous in power system analysis because symmetrical components make
it easier to

1. analyze balanced circuits,
2. analyze unbalanced circuits with balanced transmission lines, and

3. detect unbalanced 3-phase faults.

2.1 Mathematical Derivation/Interpretation

Symmetrical components contain the same information as the canonical 3-phase phasor representation, but
in a different coordinate system.! The transformation from phase representation to symmetrical components
is described by the following matrix multiplication:

Vo 11 1 Va
Vor=| Vi |==|1 a o Ve |, (2)
V2 1 a2 « VC
o= el = 120°

IThere are other tranforms/coordinate systems used in power engineering which you may encounter when modelling genera-
tors or power electronics circuits. The other commonly-used transforms are the direct-quadrature-zero transform (abbreviated
dq0 or dq) and the closely-related alpha-beta-zero transform (a80 or af), which are applied to time-domain, rather than
phasor-domain, signals. Note, the 0 component in dq0 coordinates is not the same thing the 0 sequence for symmetrical
components.



The same equation can, of course, be used for current phasors as well:

Iy (|1 T4
1012 = Il = g 1 « 042 IB . (3)
I 1 o « Ic
The inverse transformation is given by the inverse of (2):
Va 11 1 Vo
Vapc=| Ve |=|1 & «a Vi (4)
Ve 1 a o Vs

Note, the product of the two transformation matrices gives the identity matrix, as expected.

2.2 Sequence Impedance

Ohm’s law for the sequence representation of the phasors is

Vo Iy
Vi | =Z02| 5L
Va I

The sequence impedance matrix for the network described by fig. 1 and eqn. (1) is:

(Zy +3Zy) O 0
Zo1a = 0 Zy 0 . (5)
0 0 Zy

Q. What is remarkable about the sequence impedance matriz (5)? What does this tell us about sequence
analysis for 3-phase circuits with coupling impedance?

Q. Derive the equation for the sequence impedance (5) using (1), (2), and (3).

Q. What is the positive sequence component of the following 3-phase impedance matrix?

ZABC =

—_ =W

11
31
13




2.3 Constituent Phasor Interpretation

Consider the following unbalanced 3-phase signal

Va 84 —18°
Ve | = | 2.3£4—-162°
Ve 1.4/117°

and its corresponding phasor diagram:

Figure 2: Unabalanced 3-phase signal

Using the transformation in eqn. (2), the three unbalanced phasors described in fig. (2) can be represented
as sequence components:

Vo 11 8/ —18° 75/160°
Vi|=5|1 a a? 2.3/ -162° | = | 1.4/ —20°
Vs 1 o « 1.4/117° 0.5£70°

Which correspond to the following sequence components:

(a) Positive Sequence (b) Negative Sequence (¢) Zero Sequence

Figure 3: Constituent phasors for the positive, negative and zero symmetrical components

Vo, V1, and V5 are the magnitude and phase shift of the A “constituent phasor” for the zero, positive, and
negative sequences, respectively. The A constituent phasors for each sequence component are accompanied
by B and C constituent phasors in the following manner:

e Positive Sequence: the A, B and C constituent phasors have the same magnitude and are separated
by 120° in the order A then B then C.

e Negative Sequence: the A, B and C constituent phasors have the same magnitude and are separated
by 120° in the order A then C then B.

e Zero Sequence: the A, B and C constituent phasors have the same magnitude and point in the same
direction (are separated by 0°).

Because the magnitudes are equal and the phase shift between the constituent phasors are set for each
sequence component (120° or 0°), each sequence component only requires the magnitude and phase shift of
the A—phase constituent phasor.



Q. What are the positive, negative, and zero symmetrical components of a balanced, 3-phase signal?

Q. What portion of a set of 3-phase unbalanced current phasors goes through the neutral wire?

Q. What portion of an unbalanced three phase voltage or current signal does the positive sequence represent?

Q. What portion of an unbalanced three phase voltage or current signal does the negative sequence represent?

What happens when the negative and positive symmetrical components are equal?

What happens when the negative sequence magnitude is larger than the positive sequence magnitude?

Q. What portion of an unbalanced three phase voltage or current signal does the zero sequence represent?

2.4 Symmetrical Component Applications

At the beginning of this section we stated that symmetrical components are ubiquitous in power system
analysis because symmetrical components make it easier to



1. analyze balanced circuits,
2. analyze unbalanced circuits with balanced transmission lines, and

3. detect unbalanced 3-phase faults.

Q. When people refer to the “single phase equivalent” for a balanced, 3-phase circuit, what are they referring
to? Why is it easier to analyze a balanced circuit as a single phase equivalent?

Q. Why is it generally easier analyze unbalanced circuits with balanced transmission lines in symmetri-
cal components?

Q. How can you detect unbalanced faults using symmetrical components?
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