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● Model mismatch
● Delay
● Disturbances and measurement noise



Given an open loop transfer function KG, 
we can determine the closed-loop stability by looking at the closed loop transfer function.

But this doesn’t help us design robust controllers.

Robust closed loop stability



Given an open loop transfer function KG, 
we can determine the closed-loop stability by looking at the closed loop transfer function.

But this doesn’t help us design robust controllers.

To design robust controllers, we need some notion of how close the closed loop system is to instability.

Robust closed loop stability



Given an open loop transfer function KG, 
we can determine the closed-loop stability by looking at the closed loop transfer function.

But this doesn’t help us design robust controllers.

To design robust controllers, we need some notion of how close the closed loop system is to instability.

The techniques we have covered
● Root Locus
● Nyquist
● Bode 
● Small gain criterion

can be seen as robust design techniques.

Robust closed loop stability



Bode plots (Week 3)

Bode plots illustrate transfer functions

Why is the plot in log-log axes?
Signal magnitude factors are additive in the log scale:

Why are Bode plots plotted in “decibels” (i.e. scaled by 20)?
Because that’s how they started doing it ~100 years ago

Bode:

Bode skiing:

Helpful resource: https://lpsa.swarthmore.edu/Bode/BodeHow.html

Less-helpful resource: 
https://www.youtube.com/watch?v=QHPRrUTn5vQ&ab_channel=CarlosBodefan

https://lpsa.swarthmore.edu/Bode/BodeHow.html
https://www.youtube.com/watch?v=QHPRrUTn5vQ&ab_channel=CarlosBodefan


Bode plots

Bode plots illustrate the transfer function/frequency response of a system
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Frequency response

The frequency response of a system is its magnitude and phase shift for every single-frequency input

Magnitude and phase shift can be represented in the separate magnitude and phase plots

→ Bode plots

or

Magnitude and phase shift can be represented in a single complex plane plot (j = 90° shift)

→ Nyquist plots

Replacing s in the transfer function with jw gives you the frequency response equation: e.g. G(jw)

→ the Laplace transform gives you the frequency response



Bode plots 

Bode plots illustrate the transfer function/frequency response of a system

→ Describe the gain and phase shift for the spectrum of all input frequencies in two separate plots



Nyquist plot 

Nyquist plots also illustrate the transfer function/frequency response of a system 

→ Describe the gain and phase shift for the spectrum of all input frequencies in a single plot
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s-plane w-plane 

Cauchy’s Argument Principle

A seemingly useless observation…
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WHAT PLOT, DUDE?? 
WHY DO WE CARE ABOUT -1???
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Classical control

Known: G(s)

Desired: Good closed loop behavior (robust, etc.)

Approach: Choose K(s) with as few calculations as possible

We are interested in closed loop stability, but we design the open loop transfer function.

robust

These poles must 
be in the LHP

The zeros of 1+GK 
must be in the LHP

This is hard to determine 
from inspection of GK 



s-plane w-plane 

Cauchy’s Argument Principle
Tells you how many more poles than zeros are in a s-plane loop, 
based on how many times the w-plane loop encircles the origin in the counter-clockwise (CCW) direction. 
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Tells you how many more poles than zeros are in a s-plane loop, 
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this is not it



Nyquist Criterion
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s-plane w-plane 

→ we have to choose the right s-plane contour 

this is the right s-plane contour (since we are interested in stability) 



Nyquist Criterion

s-plane w-plane 

We are interested in the zeros of 1 + GK
→ encirclements of -1, not 0
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● P is the number of open loop poles 
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Nyquist Criterion

s-plane w-plane 

● N is the number of clockwise (CW) 
encirclements of -1

● P is the number of open loop poles 
in the RHP

Need 1 CCW encirclement of -1 
for each pole of GK in the RHP



Nyquist Criterion Implementation

1. Determine the number of OL poles in the RHP (the poles of GK are the poles of 1 + GK)

2. Draw/use python to display the Nyquist Diagram of GK

3. Count net CCW encirclements of -1 
(a CW encirclement cancels out a CCW encirclement)

→ If the net CCW encirclements of -1 = # OL poles in the RHP, the close loop system is stable.



Why do we care?

WHAT PLOT, DUDE?? 
WHY DO WE CARE ABOUT -1???

THE W-PLANE CORRESPONDING TO THE D-CONTOUR. 
-1 ENCIRCLEMENT TELL US ABOUT CL STABILITY!



Nyquist Plot, poles on imag. axis 

What if there are poles on the imaginary axis?



Nyquist Plot, poles on imag. axis 

What if there are poles on the imaginary axis?

The detour arcs D2 and D6 are mapped to half-circles in the w-plane with infinity radius



Nyquist Plot, poles on imag. axis 

Source: https://lpsa.swarthmore.edu/Nyquist/NyquistStability.html 



Gain and phase margins, Nyquist

Nyquist 

are two measurements of robustness.



Nyquist Criterion, admissible gains



Bode Criterion 

Unlike the Nyquist Criterion, the Bode criterion applies only if the OL does not have RHP poles
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Bode plots illustrate the transfer function/frequency response of a system

→ Describe the gain and phase shift for the spectrum of all input frequencies

Bode Criterion (applies to open-loop stable/no OL RHP pole systems):

→ The CL system is stable if the gain is less than 1 (0 dB) when the phase crosses  -180°

Bode Criterion 



Gain and phase margins

Nyquist Bode 

are two measurements of robustness.



Why do we care?


