Review:
Feedback & PID Control

Dr. Keith Moffat
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Control theory

1. Model a system using differential equations
2.  Modify the system to do what we want
3. Chill
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Closed loop/feedback control
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Why feedback control?

1. Reject unknown disturbances
2.  Reduce the effect of model uncertainty

3. Alter the system dynamics
o e.g. stabilize unstable systems
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Closed loop/feedback control

LTQ_ K(s) & G(s) ];—. .
A negative feedback block diagram is deceptively simple y(s) _ GK

— Developing intuition takes time and effort

— Allows us to design controllers that do very cool things
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Negative vs. Positive feedback

r _e K(s) - [ G(s) ]——» . ’—‘Tril G(s) ]'—> !

Negative feedback Positive feedback
e Usually holds a system to an equilibrium state e  Usually moves a system from an equilibrium state

Control theory (almost always) uses negative feedback.



Closed loop/feedback control
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A negative feedback block diagram is deceptively simple

— Developing intuition takes time and effort

y is less than r and K(s) and G(s) are both “positive” — Will y get bigger or smaller?

y is greater than r and K(s) and G(s) are both “positive” — Will y get bigger or smaller?
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— Transfer functions make the design process easier




Closed loop/feedback control

A negative feedback block diagram is deceptively simple

— Developing intuition takes time and effort

Feedback changes the differential equations that define the system

— Transfer functions make the design process easier

As a matter of idle curiosity, | once counted to find out what the order of the set of equations in an amplifier | had just
designed would have been, if | had worked with the differential equations directly. It turned out to be 55.
Henrik Bode, 1960
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What do transfer function poles represent?



Transfer function poles

G(s)K(s) =k-25 = k- —12 4

Poles describe the “modes” of the system—They tell us if the system is stable or not.

Partial fraction decomposition of G(s)K(s): a + L + ...+ L

S—pP S— P2 S— Pn

Thus, the response to an impulse is:  y(t) = ne”* + neP' + ... et



Transfer function zeros

_ Q _ n_z1(3 Zi)
G(s)K(s) =k- oG =k e

What do transfer function zeros represent?



Transfer function zeros

Zeros are harder to interpret. 3 interpretations are:

1. They factor into the residue (r terms) of LI S R W
S— P S— P2 S = Pn

o Thus, they factor into the weights of the impulse response  y(t) = ne”" + ne”" + ... ref*

2. They are the “blind spots” of the transfer function
o Inputs that match the zero do not affect the output

3. Inthe time domain, they describe derivative action on the input
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Open and Closed Loop

Open Loop (OL)

y(s) G(s)K(s)
r(s) 1+ G(s)K(s)




Open and Closed Loop

Closed Loop (CL)
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We care about the poles of the closed loop transfer function
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Closed loop poles

LTL K(s) Y [ G(s) ]—_. .

We care about the poles of the closed loop transfer function y(s) _ G(s) K(s)
(not so much about the zeros) r(s) 1+ G(s) K(s)
But..

Both the poles and the zeros of the open loop TF G(s)K(s) affect the closed loop TF poles

— We care about both the poles and the zeros of the open loop transfer function



Feedback stability

d(S)l
K (s) . u(s) a(s) y(s)
u(s) K y(s)  GK
r(s) 1+GK r(s) 1+GK
u(s) 1 y(s) _ _ G
d(s) 1+GK d(s) 1+GK



Feedback stability

d(s)l
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All 6 input/output pairs must be stable:
e(s) 1 u(s) K y(s)  GK
r(s) 14+GK r(s) 14+GK r(s) 1+GK
e(s) -G u(s) 1 y(is) G
d(s) 1+GK d(s) 1+GK d(s) 1+GK

Note: All six TFs do not have the same denominator because the numerator could be a fraction

— How do you determine the stability of all six TFs?
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Feedback stability

feedback stable < all transfer functions are BIBO stable

< rootsof 0=1+ G(s) K(s) inC_ & nounstable pole/zero cancellation

What if G(s)K(s) does have unstable pole/zero pairs?

— Don’t cancel them!



Feedback stability

Roots of 1 + GK in LHP only after
unstable pole/zero cancelation

—
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One of the six TFs will be unstable




Feedback stability

The form on the right (below) does not allow you to make pole-zero cancellations:

Y(s)  G(s)K(s) Ng Ny
R(s) 14+ G(s)K(s) NgNy+ DgDy

...s0 if you use this form you don’t have to worry about unstable pole/zero cancellations.



Controller design

Given G(s), how do you design K(s)?




Classical control
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Known: G(s)
Desired: Good closed loop behavior

Approach: Choose K(s) with as few calculations as possible



Classical control

Known: G(s)
Desired: Good closed loop behavior

Approach: Choose K(s) with as few calculations as possible

Note:
e Many of these methods were developed before computers
e  With computers, they are still useful because they provide intuition



Root Locus




Root Locus

y(s)
Gives the roots of the CL transfer function as a function of the gain k r(s)
— Uses the poles and zeros of the open loop transfer function ~ G(s)K(s) =k

p(s)+k-2z2(s)=0



Root Locus

— Uses the poles and zeros of the open loop transfer function

What happens when k is large?

What happens when k is small?

p(s)+k-2(s)=0

z(s) y
_ g p(s)
G(s)K(s)

y(s) G(s)K(s)

r(s) 1+ G(s)K(s)
z(s H?_Zl

__ - 5% e



PID control

1

K(s):K<1—|—%+TDs> —> u(t)—K(e—I—TI/t;e(T)dT—I—TDé)



PID control

1 1 [t ,
K(s)=K (1 + — —|—Tps) —> u(t)=K (e + —/ e(T)dr + TDe)
TIS T[ to

The vast majority of controllers “in the wild” are PID controllers.
This is because PID are

e |[ntuitive to understand

e Can be tuned with heuristics/intuition (sometimes) w2

e Work well with second order differential equations G(S) = L

s? + 2Cwps + w2



PID tuning options

e Guess-and-check
e Decide Tiand Td then using Root Locus
e Heuristics: Zeigler-Nichols, Astrém and Hagglund, others

e Pole placement (this is not really a PID method, but it could be used)



Pole placement

Specify the desired closed loop poles/roots of T1(s) I1(s) = Ng(s)N(s) + Dg(s)Di(s)

— calculate on coefficients K(s) to achieve those roots
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1. Determine the order of the controller: K(S) _ dp_18""" + - +dis+dy
Cr—18""1 +---c15+ ¢

2. Substitute into the yet-undetermined controller into H(s)

3. Set H(S) — Hdes(S) and solve the system of linear equations (one equation for each
polynomial coefficient) to get the controller K(s)



Pole placement

Specify the desired closed loop poles/roots of T1(s) I1(s) = Ng(s)N(s) + Dg(s)Di(s)

— calculate on coefficients K(s) to achieve those roots

|
1. Determine the order of the controller: K(S) _ dp_18""" + - +dis+dy
Cr—18""1 +---c15+ ¢

2. Substitute into the yet-undetermined controller into H(s)

3. Set H(S) — Hdes(S) and solve the system of linear equations (one equation for each
polynomial coefficient) to get the controller K(s)

...easy, right?
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feedback speed-control system




