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Control theory

1. Model a system using differential equations
2. Modify the system to do what we want 
3. Chill
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Closed loop/feedback control

Why feedback control?

1. Reject unknown disturbances

2. Reduce the effect of model uncertainty

3. Alter the system dynamics
○ e.g. stabilize unstable systems
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Closed loop/feedback control

→ Allows us to design controllers that do very cool things

A negative feedback block diagram is deceptively simple

→ Developing intuition takes time and effort



Negative feedback
● Usually holds a system to an equilibrium state 

Negative vs. Positive feedback
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Negative feedback
● Usually holds a system to an equilibrium state 

Negative vs. Positive feedback

+

Positive feedback
● Usually moves a system from an equilibrium state 

Control theory (almost always) uses negative feedback.



Closed loop/feedback control

A negative feedback block diagram is deceptively simple

→ Developing intuition takes time and effort

y is less than r and K(s) and G(s) are both “positive”

y is greater than r and K(s) and G(s) are both “positive”

Will y get bigger or smaller?

Will y get bigger or smaller?



Closed loop/feedback control

Feedback changes the differential equations that define the system

→ Transfer functions make the design process easier
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Closed loop/feedback control

Feedback changes the differential equations that define the system

→ Transfer functions make the design process easier

A negative feedback block diagram is deceptively simple

→ Developing intuition takes time and effort

As a matter of idle curiosity, I once counted to find out what the order of the set of equations in an amplifier I had just 
designed would have been, if I had worked with the differential equations directly. It turned out to be 55. 

- Henrik Bode, 1960
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Transfer function poles

Poles describe the “modes” of the system—They tell us if the system is stable or not. 

Partial fraction decomposition of G(s)K(s):

Thus, the response to an impulse is:



Transfer function zeros

What do transfer function zeros represent?



Transfer function zeros

Zeros are harder to interpret. 3 interpretations are:

1. They factor into the residue (r terms) of

○ Thus, they factor into the weights of the impulse response 

2. They are the “blind spots” of the transfer function 
○ Inputs that match the zero do not affect the output

3. In the time domain, they describe derivative action on the input
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Open and Closed Loop

Open Loop (OL) 



Open and Closed Loop

Closed Loop (CL)



Closed loop poles

We care about the poles of the closed loop transfer function

(not so much about the zeros)



Closed loop poles

We care about the poles of the closed loop transfer function

(not so much about the zeros)

But.. 

Both the poles and the zeros of the open loop TF G(s)K(s) affect the closed loop TF poles

→ We care about both the poles and the zeros of the open loop transfer function



Feedback stability

All 6 input/output pairs must be stable:



Feedback stability

All 6 input/output pairs must be stable:

Note: All six TFs do not have the same denominator because the numerator could be a fraction

→ How do you determine the stability of all six TFs?



Feedback stability



Feedback stability

What if G(s)K(s) does have unstable pole/zero pairs?



Feedback stability

What if G(s)K(s) does have unstable pole/zero pairs?

→ Don’t cancel them!



Feedback stability

One of the six TFs will be unstableRoots of 1 + GK in LHP only after 
unstable pole/zero cancelation



Feedback stability

The form on the right (below) does not allow you to make pole-zero cancellations:

…so if you use this form you don’t have to worry about unstable pole/zero cancellations.



Controller design

Given G(s), how do you design K(s)?



Classical control

Known: G(s)

Desired: Good closed loop behavior

Approach: Choose K(s) with as few calculations as possible



Classical control

Known: G(s)

Desired: Good closed loop behavior

Approach: Choose K(s) with as few calculations as possible

Note:
● Many of these methods were developed before computers
● With computers, they are still useful because they provide intuition 
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Root Locus

Gives the roots of the CL transfer function as a function of the gain k
 

→ Uses the poles and zeros of the open loop transfer function

What happens when k is large?

What happens when k is small?



PID control 



PID control 

The vast majority of controllers “in the wild” are PID controllers.
 
This is because PID are

● Intuitive to understand 

● Can be tuned with heuristics/intuition (sometimes)

● Work well with second order differential equations



PID tuning options

● Guess-and-check

● Decide Ti and Td then using Root Locus 

● Heuristics: Zeigler-Nichols, Åström and Hagglund, others

● Pole placement (this is not really a PID method, but it could be used)



Pole placement

Specify the desired closed loop poles/roots of 

→ calculate on coefficients K(s) to achieve those roots



Pole placement

1. Determine the order of the controller:

2. Substitute into the yet-undetermined controller into 

3. Set  and solve the system of linear equations (one equation for each 
polynomial coefficient) to get the controller K(s)

Specify the desired closed loop poles/roots of

→ calculate on coefficients K(s) to achieve those roots



Pole placement

1. Determine the order of the controller:

2. Substitute into the yet-undetermined controller into 

3. Set  and solve the system of linear equations (one equation for each 
polynomial coefficient) to get the controller K(s)

Specify the desired closed loop poles/roots of

→ calculate on coefficients K(s) to achieve those roots

…easy, right?



Closed loop control


