Review: Feedback & PID Control

Dr. Keith Moffat

Control theory

1. Model a system using differential equations

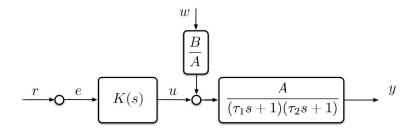
Control theory

- 1. Model a system using differential equations
- 2. Modify the system to do what we want

Control theory

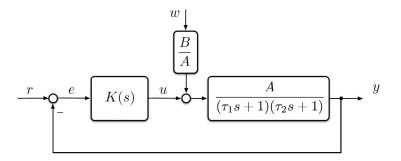
- 1. Model a system using differential equations
- 2. Modify the system to do what we want
- 3. Chill

Open loop control



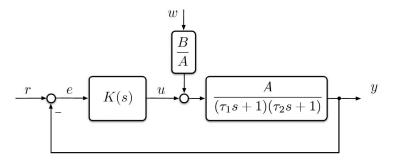
feedforward speed-control system

Closed loop control

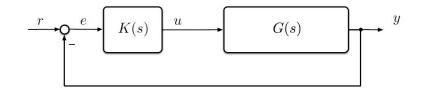


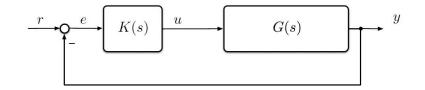
feedback speed-control system

Closed loop control

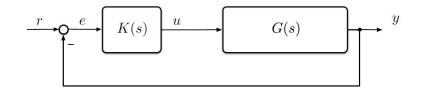


feedback speed-control system



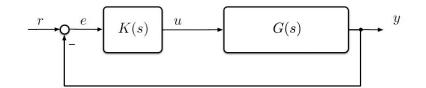


Why feedback control?

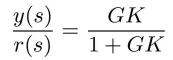


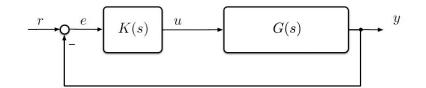
Why feedback control?

- 1. Reject unknown disturbances
- 2. Reduce the effect of model uncertainty
- 3. Alter the system dynamics
 - e.g. stabilize unstable systems



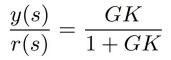
A negative feedback block diagram is deceptively simple

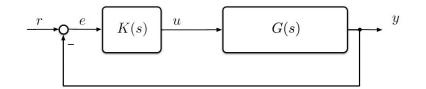




A negative feedback block diagram is deceptively simple

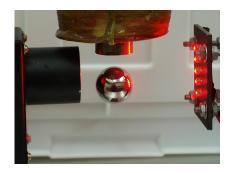
 \rightarrow Developing intuition takes time and effort

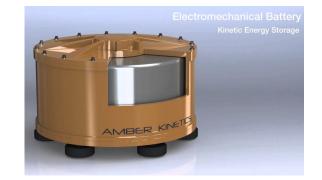




A negative feedback block diagram is deceptively simple

- \rightarrow Developing intuition takes time and effort
 - \rightarrow Allows us to design controllers that do very cool things



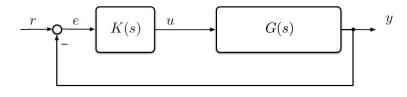


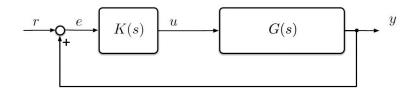
y(s)

r(s)

 $\frac{GK}{1+GK}$

Negative vs. Positive feedback





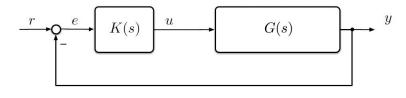
Negative feedback

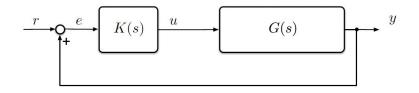
• Usually holds a system to an equilibrium state

Positive feedback

• Usually moves a system from an equilibrium state

Negative vs. Positive feedback





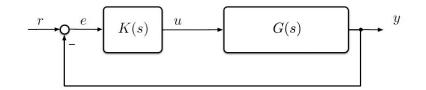
Negative feedback

• Usually holds a system to an equilibrium state

Positive feedback

Usually moves a system from an equilibrium state

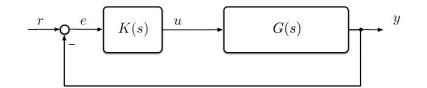
Control theory (almost always) uses negative feedback.



A negative feedback block diagram is deceptively simple

 \rightarrow Developing intuition takes time and effort

y is less than r and K(s) and G(s) are both "positive" Will y get bigger or smaller? y is greater than r and K(s) and G(s) are both "positive" Will y get bigger or smaller?

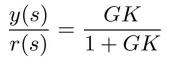


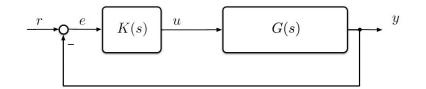
A negative feedback block diagram is deceptively simple

 \rightarrow Developing intuition takes time and effort

Feedback changes the differential equations that define the system

 \rightarrow Transfer functions make the design process easier





A negative feedback block diagram is deceptively simple

 \rightarrow Developing intuition takes time and effort

Feedback changes the differential equations that define the system

 \rightarrow Transfer functions make the design process easier

As a matter of idle curiosity, I once counted to find out what the order of the set of equations in an amplifier I had just designed would have been, if I had worked with the differential equations directly. It turned out to be 55.

- Henrik Bode, 1960

 $\frac{y(s)}{r(s)} = \frac{GK}{1 + GK}$

Transfer function poles

$$G(s)K(s) = k \cdot \frac{z(s)}{p(s)} = k \cdot \frac{\prod_{i=1}^{n_{z}}(s-z_{i})}{\prod_{i=1}^{n_{p}}(s-p_{i})}$$

What do transfer function poles represent?

Transfer function poles

$$G(s)K(s) = k \cdot \frac{z(s)}{p(s)} = k \cdot \frac{\prod_{i=1}^{n_{z}}(s-z_{i})}{\prod_{i=1}^{n_{p}}(s-p_{i})}$$

Poles describe the "modes" of the system—They tell us if the system is stable or not.

Partial fraction decomposition of G(s)K(s):
$$\frac{r_1}{s-p_1} + \frac{r_2}{s-p_2} + \ldots + \frac{r_n}{s-p_n}$$

Thus, the response to an impulse is: $y(t) = r_1 e^{p_1 t} + r_2 e^{p_2 t} + \dots + r_n e^{p_n t}$

Transfer function zeros

$$G(s)K(s) = k \cdot \frac{z(s)}{p(s)} = k \cdot \frac{\prod_{i=1}^{n_{z}}(s-z_{i})}{\prod_{i=1}^{n_{p}}(s-p_{i})}$$

What do transfer function zeros represent?

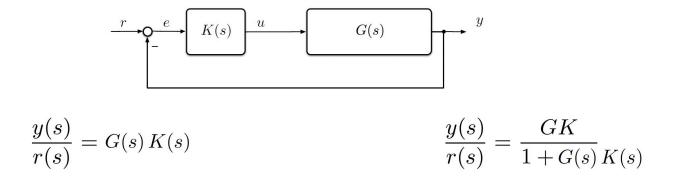
Transfer function zeros

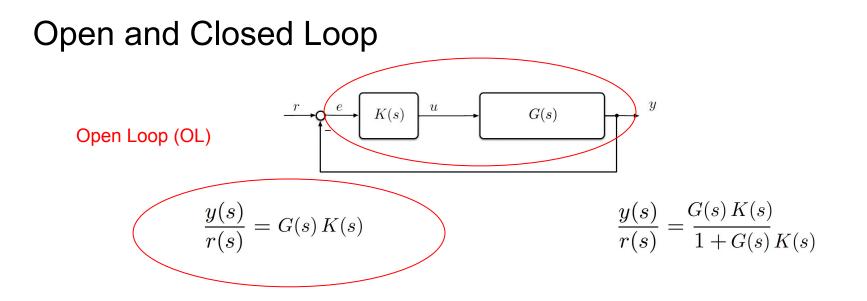
$$G(s)K(s) = k \cdot \frac{z(s)}{p(s)} = k \cdot \frac{\prod_{i=1}^{n_z} (s - z_i)}{\prod_{i=1}^{n_p} (s - p_i)}$$

Zeros are harder to interpret. 3 interpretations are:

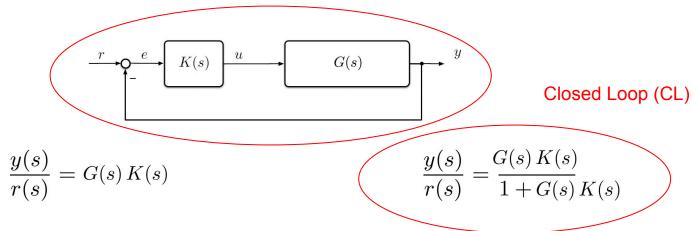
- 1. They factor into the residue (r terms) of $\frac{r_1}{s-p_1} + \frac{r_2}{s-p_2} + \ldots + \frac{r_n}{s-p_n}$
 - Thus, they factor into the weights of the impulse response $y(t) = r_1 e^{p_1 t} + r_2 e^{p_2 t} + \dots + r_n e^{p_n t}$
- 2. They are the "blind spots" of the transfer function
 - Inputs that match the zero do not affect the output
- 3. In the time domain, they describe derivative action on the input

Open and Closed Loop

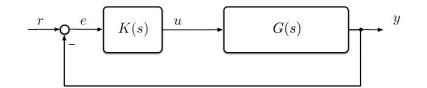




Open and Closed Loop



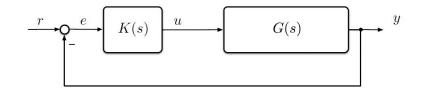
Closed loop poles



We care about the poles of the closed loop transfer function (not so much about the zeros)

 $\frac{y(s)}{r(s)} = \frac{G(s) K(s)}{1 + G(s) K(s)}$

Closed loop poles

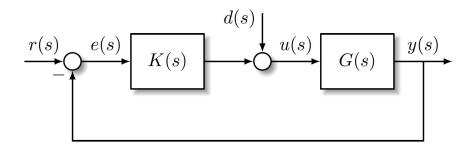


We care about the poles of the closed loop transfer function (not so much about the zeros)

```
\frac{y(s)}{r(s)} = \frac{G(s) K(s)}{1 + G(s) K(s)}
```

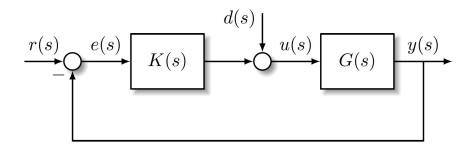
But ..

Both the poles and the zeros of the open loop TF G(s)K(s) affect the closed loop TF poles \rightarrow We care about both the poles and the zeros of the open loop transfer function



All 6 input/output pairs must be stable:

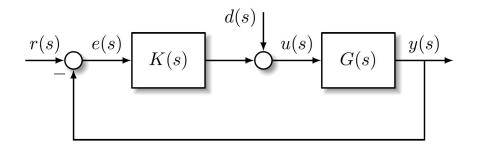
$$\frac{e(s)}{r(s)} = \frac{1}{1+GK} \qquad \qquad \frac{u(s)}{r(s)} = \frac{K}{1+GK} \qquad \qquad \frac{y(s)}{r(s)} = \frac{GK}{1+GK}$$
$$\frac{e(s)}{d(s)} = \frac{-G}{1+GK} \qquad \qquad \frac{u(s)}{d(s)} = \frac{1}{1+GK} \qquad \qquad \frac{y(s)}{d(s)} = \frac{G}{1+GK}$$



All 6 input/output pairs must be stable:

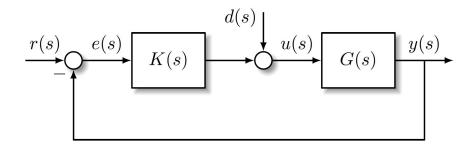
$$\frac{e(s)}{r(s)} = \frac{1}{1+GK} \qquad \qquad \frac{u(s)}{r(s)} = \frac{K}{1+GK} \qquad \qquad \frac{y(s)}{r(s)} = \frac{GK}{1+GK}$$
$$\frac{e(s)}{d(s)} = \frac{-G}{1+GK} \qquad \qquad \frac{u(s)}{d(s)} = \frac{1}{1+GK} \qquad \qquad \frac{y(s)}{d(s)} = \frac{G}{1+GK}$$

Note: All six TFs do not have the same denominator because the numerator could be a fraction \rightarrow How do you determine the stability of all six TFs?



feedback stable \Leftrightarrow all transfer functions are BIBO stable

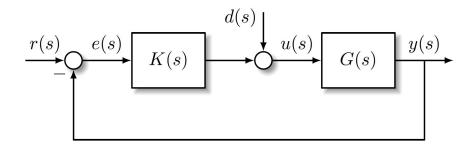
 \Leftrightarrow roots of 0 = 1 + G(s) K(s) in \mathbb{C}_{-} & no unstable pole/zero cancellation



feedback stable \Leftrightarrow all transfer functions are BIBO stable

 \Leftrightarrow roots of 0 = 1 + G(s) K(s) in \mathbb{C}_{-} & no unstable pole/zero cancellation

What if G(s)K(s) does have unstable pole/zero pairs?

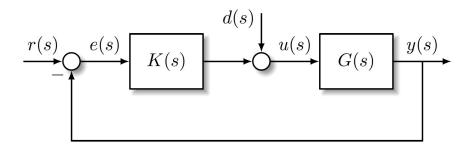


feedback stable \Leftrightarrow all transfer functions are BIBO stable

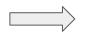
 \Leftrightarrow roots of 0 = 1 + G(s) K(s) in \mathbb{C}_{-} & no unstable pole/zero cancellation

What if G(s)K(s) does have unstable pole/zero pairs?

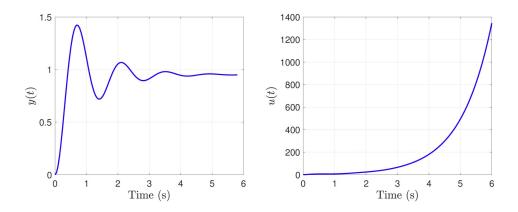
 \rightarrow Don't cancel them!

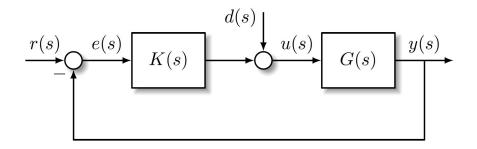


Roots of 1 + GK in LHP only after unstable pole/zero cancelation



One of the six TFs will be unstable



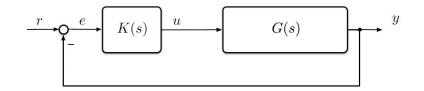


The form on the right (below) does not allow you to make pole-zero cancellations:

$$\frac{Y(s)}{R(s)} = \frac{G(s)K(s)}{1 + G(s)K(s)} = \frac{N_{\rm g}N_{\rm k}}{N_{\rm g}N_{\rm k} + D_{\rm g}D_{\rm k}}$$

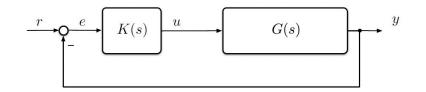
...so if you use this form you don't have to worry about unstable pole/zero cancellations.

Controller design



Given G(s), how do you design K(s)?

Classical control

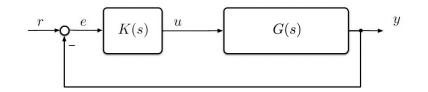


Known: G(s)

Desired: Good closed loop behavior

Approach: Choose K(s) with as few calculations as possible

Classical control



Known: G(s)

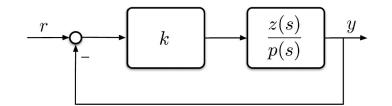
Desired: Good closed loop behavior

Approach: Choose K(s) with as few calculations as possible

Note:

- Many of these methods were developed before computers
- With computers, they are still useful because they provide intuition

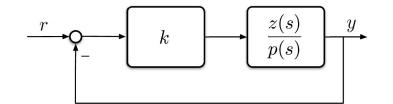
Root Locus



Gives the roots of the CL transfer function as a function of the gain k

$$\frac{y(s)}{r(s)} = \frac{G(s) K(s)}{1 + G(s)} K(s)$$

Root Locus



Gives the roots of the CL transfer function as a function of the gain k

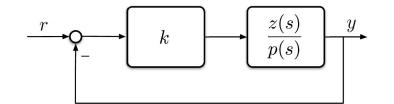
$$\frac{y(s)}{r(s)} = \frac{G(s) K(s)}{1 + G(s) K(s)}$$

 \rightarrow Uses the poles and zeros of the open loop transfer function

$$G(s)K(s) = k \cdot \frac{z(s)}{p(s)} = k \cdot \frac{\prod_{i=1}^{n_{z}} (s-z_{i})}{\prod_{i=1}^{n_{p}} (s-p_{i})}$$

$$p(s) + k \cdot z(s) = 0$$

Root Locus



Gives the roots of the CL transfer function as a function of the gain k

$$\frac{y(s)}{r(s)} = \frac{G(s) K(s)}{1 + G(s) K(s)}$$

 \rightarrow Uses the poles and zeros of the open loop transfer function

$$G(s)K(s) = k \cdot \frac{z(s)}{p(s)} = k \cdot \frac{\prod_{i=1}^{n_{z}}(s-z_{i})}{\prod_{i=1}^{n_{p}}(s-p_{i})}$$

$$p(s) + k \cdot z(s) = 0$$

What happens when k is large?

What happens when k is small?

PID control

$$K(s) = K\left(1 + \frac{1}{T_I s} + T_D s\right) \qquad \Longrightarrow \qquad u(t) = K\left(e + \frac{1}{T_I}\int_{t_0}^t e(\tau)d\tau + T_D \dot{e}\right)$$

PID control

$$K(s) = K\left(1 + \frac{1}{T_I s} + T_D s\right) \qquad \Longrightarrow \qquad u(t) = K\left(e + \frac{1}{T_I}\int_{t_0}^t e(\tau)d\tau + T_D \dot{e}\right)$$

The vast majority of controllers "in the wild" are PID controllers.

This is because PID are

- Intuitive to understand
- Can be tuned with heuristics/intuition (sometimes)
- Work well with second order differential equations

$$G(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

PID tuning options

- Guess-and-check
- Decide Ti and Td then using Root Locus
- Heuristics: Zeigler-Nichols, Åström and Hagglund, others
- Pole placement (this is not really a PID method, but it could be used)

Pole placement

Specify the desired closed loop poles/roots of $\,\Pi(s)\,$

 \rightarrow calculate on coefficients K(s) to achieve those roots

$$\Pi(s) = N_{g}(s)N_{k}(s) + D_{g}(s)D_{k}(s)$$

Pole placement

Specify the desired closed loop poles/roots of $\,\Pi(s)\,$

 \rightarrow calculate on coefficients K(s) to achieve those roots

$$\Pi(s) = N_{g}(s)N_{k}(s) + D_{g}(s)D_{k}(s)$$

$$K(s) = \frac{d_{n-1}s^{n-1} + \dots + d_1s + d_0}{c_{n-1}s^{n-1} + \dots + c_1s + c_0}$$

- 2. Substitute into the yet-undetermined controller into $\Pi(s)$
- 3. Set $\Pi(s) = \Pi_{des}(s)$ and solve the system of linear equations (one equation for each polynomial coefficient) to get the controller K(s)

Pole placement

Specify the desired closed loop poles/roots of $\,\Pi(s)\,$

 \rightarrow calculate on coefficients K(s) to achieve those roots

$$\Pi(s) = N_{g}(s)N_{k}(s) + D_{g}(s)D_{k}(s)$$

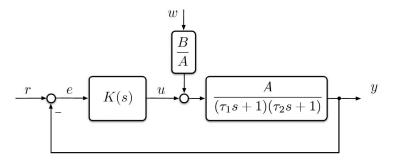
1. Determine the order of the controller:

$$K(s) = \frac{d_{n-1}s^{n-1} + \dots + d_1s + d_0}{c_{n-1}s^{n-1} + \dots + c_1s + c_0}$$

- 2. Substitute into the yet-undetermined controller into $\Pi(s)$
- 3. Set $\Pi(s) = \Pi_{des}(s)$ and solve the system of linear equations (one equation for each polynomial coefficient) to get the controller K(s)

...easy, right?

Closed loop control



feedback speed-control system

