Review: Responses to LTI Systems & BIBO Stability

Dr. Keith Moffat

Not BIBO-stable:

Frequency domain representation

Asserts that the input is a sinusoid at frequency w

Output: (also a sinusoid because the system is LTI)

 $y(t) = |G(i\omega)|e^{i(\omega t + \arg(G(i\omega)))}$

Frequency domain representation

Asserts that the input is a sinusoid at frequency w

Output: (also a sinusoid because the system is LTI)

$$y(t) = |G(i\omega)|e^{i(\omega t + \arg(G(i\omega)))}$$

Why frequency-domain?

How to get the frequency domain representation?

Frequency domain representation

Asserts that the input is a sinusoid at frequency w

Output: (also a sinusoid because the system is LTI)

 $y(t) = |G(i\omega)|e^{i(\omega t + \arg(G(i\omega)))}$

Why frequency-domain?

Because matrix exponentials are tedious and the frequency domain plots have a nice standard form (Note: *any* signal can be represented by a sum of sinusoidal waves of varying frequency and amplitude)

How to get the frequency domain representation?

Calculate the transfer function and set s = jw

Note:

Transfer functions and frequency domain analysis are typically applied to SISO systems. They can be applied to MIMO systems as well, but each input-output pair requires its own transfer function

Bode plots illustrate transfer functions

Bode:

Bode plots illustrate transfer functions

Why is the plot in log-log axes?

Why are Bode plots plotted in "decibels" (i.e. scaled by 20)?

Bode:

Helpful resource: https://lpsa.swarthmore.edu/Bode/BodeHow.html

Bode plots illustrate transfer functions

Why is the plot in log-log axes?

Signal magnitude factors are additive in the log scale: $\lg(a \cdot b) = \lg a + \lg b$

Why are Bode plots plotted in "decibels" (i.e. scaled by 20)? Because that's how they started doing it ~100 years ago

: 'bel' = signal energy in log-scale $|G|_{dB} = 10 \lg |G|^2 = 20 \lg |G|$

Helpful resource: https://lpsa.swarthmore.edu/Bode/BodeHow.html

Bode:

Bode plots illustrate transfer functions

Why is the plot in log-log axes? Signal magnitude factors are additive in the log scale: $\lg(a \cdot b) = \lg a + \lg b$

Why are Bode plots plotted in "decibels" (i.e. scaled by 20)? Because that's how they started doing it ~100 years ago

: 'bel' = signal energy in log-scale $|G|_{\rm dB} = 10 \lg |G|^2 = 20 \lg |G|$

Helpful resource: https://lpsa.swarthmore.edu/Bode/BodeHow.html

Less-helpful resource: https://www.youtube.com/watch?v=QHPRrUTn5vQ&ab_channel=CarlosBodefan

Bode:

Bode skiing:

Bode plots example

Poles and Zeros

$$G(s) = \frac{b_{n-1}s^{n-1} + \ldots + b_1s + b_0}{s^n + a_{n-1}s^{n-1} + \ldots + a_1s + a_0} + D = K \cdot \frac{\prod_{i=1}^m (s - z_i)}{\prod_{i=1}^n (s - p_i)}$$

BIBO stability

$$\dot{x} = Ax + Bu$$

 $y = Cx + Du$

BIBO stability:
$$y(t) = \int_0^t g(t - \tau) u(\tau) d\tau$$
 is bounded if u(t) is bounded

- internally stable if all eigenvalues of A are in the open left half plane; and
- BIBO stable if all poles of $G(s) = C(sI A)^{-1}B + D$ are in the open left half plane.

- internal stability \implies BIBO
- BIBO \implies internal stability if there are no pole/zero cancellations

BIBO stability

$$\dot{x} = Ax + Bu$$

 $y = Cx + Du$

BIBO stability:
$$y(t) = \int_0^t g(t - \tau) u(\tau) d\tau$$
 is bounded if u(t) is bounded

- internally stable if all eigenvalues of A are in the open left half plane; and
- **BIBO** stable if all poles of $G(s) = C(sI A)^{-1}B + D$ are in the open left half plane.

- internal stability \implies BIBO
- BIBO \implies internal stability if there are no pole/zero cancellations

If there are pole/zero cancellations, then an unstable internal mode could be excited by the initial condition, even though the unstable mode is not excited by the input or seen at the output

Pole-zero cancellations

$$Y(s) = \underbrace{K \cdot \frac{\prod_{i=1}^{m} (s - z_i)}{\prod_{i=1}^{n} (s - p_i)}}_{=G(s)} \cdot U(s) = \underbrace{K \cdot \frac{(s - z_1) \cdot (s - z_2) \cdots (s - z_m)}{(s - p_1) \cdot (s - p_2) \cdots (s - p_n)}}_{=G(s)} U(s)$$

Determining BIBO Stability

A system is BIBO stable if:

- the system is internally stable
 - So if have an A-matrix, you can state BIBO stability from the eigenvalues in the affirmative case
- the transfer function poles are in the LHP
 - Can use the transfer function after pole-zero cancellations
- The integral of impulse response magnitude is bounded:
 - This works even when the transfer function is not rational

 $\int_{-\infty}^{\infty} |g(t)| dt < \infty \ (=\infty)$

BIBO stability application

Ignoring fast dynamics:

 $\widehat{G}(s) \approx G_{\text{fast}}(0) \cdot G_{\text{slow}}(s)$

You can only do this if the fast dynamics are BIBO stable!

Block diagram modeling

Blocks are transfer functions:

Discrete time systems

 $\begin{aligned} x[k+1] &= Ax[k] + Bu[k] \\ y[k] &= Cx[k] + Du[k] \end{aligned}$

	Continuous Time Systems	Discrete Time Systems
State space:	$\dot{x} = Ax + Bu$	x[k+1] = Ax[k] + Bu[k]
	y = Cx + Du	y[k] = Cx[k] + Du[k]
Time-domain convolution:	$\int_0^t C e^{A(t- au)} B u(au) d au$	$\sum_{\ell=0}^{k-1} CA^{k-\ell-1}Bu[\ell]$
Frequency domain:	Laplace transform	z-transform ($z=e^{sT}$)
Transfer function:	$G(s) = C(sI - A)^{-1}B + D$	$G[z] = C(zI - A)^{-1}B + D$
Stability condition:	Poles in left-half plane	Poles in unit-circle
DC gain:	G(0)	G(1)
Bode plots:	Common and useful	Less common, distorted

Continuous \rightarrow Discrete time systems

 $\begin{aligned} x[k+1] &= Ax[k] + Bu[k] \\ y[k] &= Cx[k] + Du[k] \end{aligned}$

Discretization interval: length of time between discrete system measurements (and actuation), e.g. T

"**Oth-order hold**": sample input at time t and use that from time (t) to time (t +T)

Discrete inputs interacting with a continuous system:

$$\begin{array}{c} u[k] \\ \hline \end{array} \\ \hline \end{array} \\ H_T \\ \hline \end{array} \\ \begin{array}{c} u(t) \\ y = Cx + Du \end{array} \\ \begin{array}{c} y(t) \\ \hline \end{array} \\ \begin{array}{c} y(t) \\ \hline \end{array} \\ \begin{array}{c} S_T \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} y[k] \\ \hline \end{array} \\ \end{array}$$

For general H(t):

$$x(t_{k+1}) = \underbrace{e^{A(t_{k+1}-t_k)}}_{=e^{AT}} x(t_k) + \int_{t_k}^{t_{k+1}} e^{A(t_{k+1}-\tau)} Bu(\tau) \,\mathrm{d}\tau$$

If we keep u(t) constant for each interval:

$$x(t_{k+1}) = e^{A(t_{k+1}-t_k)}x(t_k) + \left(\int_{t_k}^{t_{k+1}} e^{A(t_{k+1}-\tau)}B\,\mathrm{d}\tau\right)u(t_k)$$

Discrete inputs interacting with a continuous system:

$$\begin{array}{c} u[k] \\ \hline \end{array} \\ \hline \end{array} \\ H_T \\ \hline \end{array} \\ \begin{array}{c} u(t) \\ y = Cx + Du \end{array} \\ \begin{array}{c} y(t) \\ \hline \end{array} \\ \begin{array}{c} y(t) \\ \hline \end{array} \\ \begin{array}{c} S_T \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} y[k] \\ \hline \end{array} \\ \end{array}$$

For general H(t):

$$x(t_{k+1}) = \underbrace{e^{A(t_{k+1}-t_k)}}_{=e^{AT}} x(t_k) + \int_{t_k}^{t_{k+1}} e^{A(t_{k+1}-\tau)} Bu(\tau) \,\mathrm{d}\tau$$

If we keep u(t) constant for each interval:

$$x(t_{k+1}) = e^{A(t_{k+1}-t_k)}x(t_k) + \left(\int_{t_k}^{t_{k+1}} e^{A(t_{k+1}-\tau)}B\,\mathrm{d}\tau\right)u(t_k)$$

Discrete inputs interacting with a continuous system:

$$\begin{array}{c} u[k] \\ \hline \\ H_T \end{array} \qquad \downarrow u(t) \\ y = Cx + Du \end{array} \qquad y(t) \\ \hline \\ S_T \end{array} \qquad \downarrow y[k] \\ \hline \\ S_T \end{array}$$

$$\dot{x}(t) = Ax(t) + Bu(t)$$

$$y(t) = Cx(t) + Du(t)$$

$$x[k+1] = A_{d}x[k] + B_{d}u[k]$$

$$y[k] = Cx[k] + Du[k]$$

Theory:

ory:
$$A_{
m d}=e^{AT}$$
 $B_{
m d}=\int_0^T e^{A\sigma}B\,{
m d}\sigma$ $=A^{-1}(e^{AT}-I_n)B$ if A is invertible

Discrete inputs interacting with a continuous system:

$$\begin{array}{c} u[k] \\ \hline \\ H_T \end{array} \xrightarrow{u(t)} \hline \\ y = Cx + Du \end{array} \xrightarrow{y(t)} S_T \xrightarrow{y[k]} \\ S_T \xrightarrow{y[k]} \\$$

Theory: $A_{\rm d} = e^{AT}$ $B_{\rm d} = \int_0^T e^{A\sigma} B \, \mathrm{d}\sigma = A^{-1}(e^{AT} - I_n)B$ if A is invertible

In practice: $sys_s_dt = control.StateSpace.sample(sys_s_ct, Ts, method='zoh')$

Bode skiing:

Helpful resource: https://lpsa.swarthmore.edu/Bode/BodeHow.html

Less-helpful resource: https://www.youtube.com/watch?v=QHPRrUTn5vQ&ab_channel=CarlosBodefan

