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LTI Systems

z(t) = Ax(t) , x(0) = xq



Solutions to diagonalizable LTI systems

Modal decomposition

Consider the linear homogeneous system

i = Ax,
Assume that all eigenvectors are linearly independent such that A can be diagonalized as
A 0 ... 0 T
0 X 0 .| [
A:[vl Vg ... Un] . ) . & WAV =A,
—_— | s m &
=V 0 ... 0 A Lend
et =W=vV-1

where the triple (A;,v;, w;) denotes an eigenvalue and associated right (respectively, left) eigenvectors of A.

Coordinate transformation: Now let z = V2 & 2 = V~lz = Wa:
%VZIVZZAVZ & 2=WAVz=Az
z(0) = Wz(0) = Waxy.
In these coordinates, the system is diagonal, i.e., all components are decoupled:
Zi = Ni%, 1€{l,...,n}.
This system representation is called the modal form. Its solution is given by

zi(t) = etz (0), ie{l,...,n}.



Solutions to diagonalizable LTI systems

Modal decomposition

Consider the linear homogeneous system

such that A can be diagonalized as <:| Unde_r_ SpeCIaI
conditions

wi
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where the triple (A;,v;, w;) denotes an eigenvalue and associated right (respectively, left) eigenvectors of A.

Coordinate transformation: Now let z = V2 & 2 = V~lz = Wa:
%VZIVZZAVZ & 2=WAVz=Az
z(0) = Wz(0) = Waxy.
In these coordinates, the system is diagonal, i.e., all components ar
Zi = Ni%, 1€{l,...,n}.

This system representation is called the modal form. Its solution is given by

‘ Independent equations
i€l om} for each mode




Solutions to diagonalizable LTI systems

Matrix is All the eigenvectors are
diagonalizable <:> linearly independent
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Solutions to diagonalizable LTI systems

Matrix is All the eigenvectors are
<:> linearly independent

diagonalizable

This is true for symmetric-real matrices,
but is not always the case.

What do you do when an LTE system’s
dynamics matrix A is not diagonalizable?

€

NO

YES]

Impossible to find K

linearly independent
eigenvec! tors



Solutions to general LTI systems

z(t) = Ax(t) , x(0) = xg

z(t) = e xg .

The “matrix exponential” to the rescue!



When you got the "rescue dog" job, but you lied on your

Solutions to general LTI systems =

z(t) = Azx(t), z(0) = xq

z(t) = e xg .

The “matrix exponential” to the rescue!




The matrix exponential

Definition: for a square matrix A the matrix exponential is the series

21 1 1
At _ kpk 2,2 3,3
e —kEO—!At —I+At+—2At+—6At+...




The matrix exponential

Definition: for a square matrix A the matrix exponential is the series

| 1 1
At _ ki _ 1422 1433
e = k§=0—k_!At = I+At+2At +6At +...

...an infinite series.




The matrix exponential

Definition: for a square matrix A the matrix exponential is the series

6

o0
At — }:lAkt’f = I+At+1A2t2+1A3t3+...
k! 2

Properties of the matrix exponential

d At _AeAt

e _ .|
1 derivative: Ze* = B inverse: (eAt> — oAt

- . LAt _ t A
2 integral: e =1+ A [ye’Tdr 5 commutativity if A and B

o(A+B)t _ At Bt

3 semi-group: eAteA” = Alt+7) commute: = edte

6 Cayley Hamilton: e“! can be expressed as linear combination of

I,A A% ... A" with some coefficients po(t), ..., un—1(t) € R:

= I
eM=)" EAktk = po(t)] + p1(t)A + -+ + pna (A"
k=0 """



The matrix exponential

Definition: for a square matrix A the matrix exponential is the series

6

o0
At — }:lAkt’f = I+At+1A2t2+1A3t3+...
k! 2

Properties of the matrix exponential

T _ 1
1 de”Vat'V 4 inverse: (eAt> = g~ At

- . LAt _ t A
2 integral: e =1+ A [ye’Tdr 5 commutativity if A and B

o(A+B)t _ At Bt

3 semi-group: eAteA” = Alt+7) commute: = edte

6 Cayley Hamilton: e“! can be expressed as linear combination of

I,A A% ... A" with some coefficients po(t), ..., un—1(t) € R:

= I
eM=)" EAktk = po(t)] + p1(t)A + -+ + pna (A"
k=0 """

{1 pretty cool...

and useful.



The matrix exponential

Definition: for a square matrix A the matrix exponential is the series

6

o0
At — }:lAkt’f = I+At+1A2t2+1A3t3+...
k! 2

Properties of the matrix exponential

d At _AeAt

e _ .|
1 derivative: Ze* = B inverse: (eAt> — oAt

- . LAt _ t A
2 integral: e =1+ A [ye’Tdr 5 commutativity if A and B

o(A+B)t _ At Bt

3 semi-group: eAteA” = Alt+7) commute: = edte

6 Cayley Hamilton: e“! can be expressed as linear combination of

I, A, A% ... A"V &ith s <y pn—1(t) € R:

= 1
eAt = Z EAktk = ”‘O(t)I + ,u,l(t)A Sk ﬂn—l(t)
k=0 """

{=1 also pretty cool,
and sometimes

useful.



Solving the matrix exponential

=1 1 1

So how do we get e = ) EA’“t’“ = I+ At + §A2t2 + 6A3t3 +... 2?7
k=0 """

Five ways to compute the matrix exponential:

— Series expansion: if the system matrix A is nilpotent, apply the above definition
— Laplace transform: et = £71{(sI — A)7!}

— Diagonalization: et = VeAtW = VeAty—1

— Cayley-Hamilton:

et = po(OI + p1(t)A+ - + pn_1(t)A™ 1

6’\1t 1 )\1 )\711_1 ,u‘o(t)
ernt Y pLomed Il FTomEE (Y

Educated guess



Solving the matrix exponential

A | 1 1
So how dowe get e = ) —AMF = T4+ At+ A%+ A% +... 272
£ k| 2 6

Five ways to compute the matrix exponential:

— Series expansion: if the system matrix A is nilpotent, apply the above definition <:| Easiest. Doesn’t always apply
— Laplace transform: et = £71{(sI — A)7!}

— Diagonalization: et = VeAtW = VeAty —1

— Cayley-Hamilton:

et = po(t)] + p1 () A+ -+ + pn_1(t) A"

6’\1t 1 )\1 )\711_1 ,u‘o(t)
eAnt L% pLomed Il FTomEE (Y

{— Easiest. Need a good guess

Educated guess



Solving the matrix exponential

A | 1 1
So how dowe get e = ) —AMF = T4+ At+ A%+ A% +... 272
£ k| 2 6

Five ways to compute the matrix exponential:

— Series expansion: if the system matrix A is nilpotent, apply the above definition

— Laplace transform: et = £71{(sI — A)7!} {—1 Requires symbolic matrix inversion,
difficult for matrices n > 2
— Diagonalization: et = VeAtW = VeAty —1

— Cayley-Hamilton:

et = po(t)] + p1 () A+ -+ + pn_1(t) A"

6’\1t 1 )\1 )\711_1 ,u‘o(t)
eAnt L% pLomed Il FTomEE (Y

Educated guess



Solving the matrix exponential

A | 1 1
So how dowe get e = ) —AMF = T4+ At+ A%+ A% +... 272
£ k| 2 6

Five ways to compute the matrix exponential:

— Series expansion: if the system matrix A is nilpotent, apply the above definition

— Laplace transform: et = £71{(sI — A)7!}

— Diagonalization: et = VeAtW = VeAty —1 <:| Useful when Ais diagonalizable
— Cayley-Hamilton:

et = po(t)] + p1 () A+ -+ + pn_1(t) A"

6’\1t 1 )\1 )\711_1 ,u‘o(t)
eAnt L% pLomed Il FTomEE (Y

Educated guess



Solving the matrix exponential

A | 1 1
So how dowe get e = ) —AMF = T4+ At+ A%+ A% +... 272
£ k| 2 6

Five ways to compute the matrix exponential:

— Series expansion: if the system matrix A is nilpotent, apply the above definition
— Laplace transform: et = £71{(sI — A)7!}
— Diagonalization: et = VeAtW = VeAty —1

— Cayley-Hamilton:

{—1 Useful, requires solving a
system of linear equations to

A — po(8)] + pr(E)A + -+ + piny (£) A" hy
SSPA PAIPR S St 1) get the coefficients

G’\lt 1 )\1 )\711_1 ,u‘o(t)
eAnt L% pLomed Il FTomEE (Y

Educated guess



Cayley-Hamilton

Characteristic polynomial p()) of the matrix A € R"*™:

det(’\I_A) = ag +a1/\+a2,\2 s sy _|_an_1)\n—1 A"

=p(\)

J

Cayley Hamilton: the matrix A satisfies its characteristic polynomial

p(A) = aol + a1A+ agA® + -+ a1 A"+ A" = 0.

Consequence: every matrix power A for k > n can be expressed as
linear combination of I, A, A%,..., A" 1. In particular,

A= (aol + alA + (12A2 +---+ an_lA""l) .



Cayley-Hamilton

Characteristic polynomial p()) of the matrix A € R"*™:

det(M — A) =ag+ ad+aX2 + -+ an_ A" 142", <: Derived as a scalar equation

=p(\)

Cayley Hamilton: the matrix A satisfies its characteristic polynomial

p(A) = apl + a1A+ a2A? + -+ a1 A" 14+ A" =0. {7 Matrix equation for A

Consequence: every matrix power A" fo@:an be expressed as
linear combination of I, A, A%,..., A" 1. In particular,

A" = _ (aOI Joia Ariaslt? o sl an_lAn—l) , {1 Does not tell us what the a
coefficients are (we have

to solve for those)



Continuous LTI System with inputs

t
z(t) = eAt70) g (¢) +/ eA=") Bu(r) dr,

to

t
y(t) = Cett0) z(¢) +/ CeA") Bu(r) dr + Du(t)
to



Discrete LTI System with inputs

Tpy1 = Aqwy + Baug,

Y, = Cairy, + Dgug.



Discretization of LTI systems with inputs

eAT ‘ fOTeAT dr B
c| D

(T is the sampling time)

if det(A4) #0, Bj = A" YeAT - I)B



Discrete LTI System with inputs

Solution:

Tpy1 = Aqwy + Baug,

Y, = Cairy, + Dgug.

k—1
g = Aé{xo + Z Aﬁ_l_TBduT,

7=0

k—1
yk = CaAlzo + )  CaAS™ 77 Bqur + Dquy.
=0



Stability




Stability




Stability of continuous LTI systems

Transfer function representation

Consider Y (s) = m U (s) or its associated state-space realization
: 0 1 0
T = T+ u o, Y= [1 0} &
—ag —ai 1 &C,_/
\-—v_/ =
=A =B

The characteristic polynomial is given by pa(X) = A2 + a1\ + ag .

Routh-Hurwitz criterion for polynomial of degree 2: The roots of
p2(\) have strictly negative real part if and only if ay > 0 and a; > 0.

Routh-Hurwitz criterion for polynomial of degree n: The roots of
Prn(A) = A"+ a1 A" 4+ aid +ag

have strictly negative real part only if a; > 0 for all s € {0,1,...,n — 1}.



Stability of continuous LTI systems

State space representation

The continuous-time linear homogeneous system & = Az is

1 globally asymptotically stable if and only if all eigenvalues of A have
strictly negative real part Re(\) < 0 for all A € spectrum(A).

Such a matrix is also called a Hurwitz matrix. We often abbreviate
the condition {Re(\) < 0 V A € spectrum(A)} as spectrum(A)C C_.

2 stable if and only if all eigenvalues of A have non-positive real part
Re(A\) <0 for all A € spectrum(A), & all Jordan blocks corresponding

to eigenvalues with zero real parts are of dimension 1 x 1.

3 unstable if and only if at least one eigenvalue of A has a positive real
part or zero real part with corresponding Jordan block larger than 1 x 1.



Stability of continuous LTI systems

State space representation

The continuous-time linear homogeneous system & = Az is

1 globally asymptotically stable if and only if all eigenvalues of A have
strictly negative real pa iw; all A € spectrum(A).
Such a matrix is also called a Hurwitz matrix. We often abbreviate
the condition {Re(\) < 0 V A € spectrum(A)} as spectrum(A)C C_.

2 stable if and only if all eigenvalues of A have non-positive real part
or all \ € spectrum(A), & all Jordan blocks corresponding

to eigenvalues with zero real parts are of dimension 1 x 1.

3 unstable if and only if at least one eigenvalue of A has a positive real
part or zero real part with corresponding Jordan block larger than 1 x 1.



Stability of discrete LTI systems

State space representation

The discrete-time linear homogeneous system z™ = Az is

1 globally asymptotically stable if and only if all eigenvalues of A have
modulus strictly less than onr all \ € spectrum(A).

Such a matrix is also called a Schur matrix. We often abbreviate the
condition {|A| <1 YV € spectrum(A)} as spectrum(A)C D.

2 stable if and only if all eigenvalues of A have modulus less than one,
for all A € spectrum(A), & all Jordan blocks corresponding to
eigenvalues with modulus one are of dimension 1 x 1.

3 unstable if and only if at least one eigenvalue of A has a modulus
larger than one or modulus one with corresponding Jordan block larger
than 1 x 1.



Nonlinear system stability

N
2

Use Lyapunov:

V(0)=0 and V(z)>0Vze S\{0} (positive definite)

=
]

]

/

oV
I ox

and

V(z)=VV(z)T-f(z) <0 z €S (negative semidefinite)

then x = 0 is stable.



Nonlinear system stability verification

Consider the system & = f(z) with an equilibrium at the origin: f(0) =0

1 via the solution (typically numerically):

||z(t)|| bounded (& convergent) <= (asymptotic) stability

= not practical for state-space dimension n > 2 (useful in linear case)

2 via linearization:

The origin of £ = f(z) is locally asymptotically stable (resp.,

unstable) if the linearized system %Am = %S”) Az is

z=0

asymptotically stable (resp., unstable).

= often applicable, but now always; see e.g., © = + 23






