Review: Solutions to LTI Systems & Internal Stability

Dr. Keith Moffat

LTI Systems

$$\dot{x}(t) = Ax(t), \ x(0) = x_0$$

Modal decomposition

Consider the linear homogeneous system

 $\dot{x} = Ax$, $x(0) = x_0$.

Assume that all eigenvectors are **linearly independent** such that A can be diagonalized as

$$A = \underbrace{\begin{bmatrix} v_1 & v_2 & \dots & v_n \end{bmatrix}}_{=V} \underbrace{\begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & 0 & \dots \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \dots & 0 & \lambda_n \end{bmatrix}}_{=\Lambda} \underbrace{\begin{bmatrix} w_1^T \\ \vdots \\ w_n^T \end{bmatrix}}_{=W=V^{-1}} \quad \Leftrightarrow \quad WAV = \Lambda$$

where the triple (λ_i, v_i, w_i) denotes an eigenvalue and associated right (respectively, left) eigenvectors of A.

Coordinate transformation: Now let $x = Vz \Leftrightarrow z = V^{-1}x = Wx$: $\frac{d}{dt}Vz = V\dot{z} = AVz \quad \Leftrightarrow \quad \dot{z} = WAVz = \Lambda z$ $z(0) = Wx(0) = Wx_0$.

In these coordinates, the system is diagonal, i.e., all components are decoupled:

$$\dot{z}_i = \lambda_i z_i$$
, $i \in \{1, \ldots, n\}$.

This system representation is called the modal form. Its solution is given by

$$z_i(t) = e^{\lambda_i t} z_i(0), \qquad i \in \{1, \dots, n\}.$$

Modal decomposition

Consider the linear homogeneous system

$$\dot{x} = Ax,$$

$$x(0) = x_{0}.$$
Assume that all eigenvectors are **linearly independent** such that A can be diagonalized as
$$A = \underbrace{\begin{bmatrix} v_{1} & v_{2} & \dots & v_{n} \end{bmatrix}}_{=V} \underbrace{\begin{bmatrix} \lambda_{1} & 0 & \dots & 0 \\ 0 & \lambda_{2} & 0 & \dots \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \dots & 0 & \lambda_{n} \end{bmatrix}}_{=A} \underbrace{\begin{bmatrix} w_{1}^{T} \\ \vdots \\ w_{n}^{T} \end{bmatrix}}_{=W=V^{-1}} \Leftrightarrow WAV = \Lambda,$$
Under special conditions

where the triple (λ_i, v_i, w_i) denotes an eigenvalue and associated right (respectively, left) eigenvectors of A.

Coordinate transformation: Now let $x = Vz \Leftrightarrow z = V^{-1}x = Wx$:

$$\frac{d}{dt}Vz = V\dot{z} = AVz \quad \Leftrightarrow \quad \dot{z} = WAVz = \Lambda z$$
$$z(0) = Wx(0) = Wx_0.$$

In these coordinates, the system is diagonal, i.e., all components are decoupled:

$$\dot{z}_i = \lambda_i z_i$$
, $i \in \{1, \ldots, n\}$.

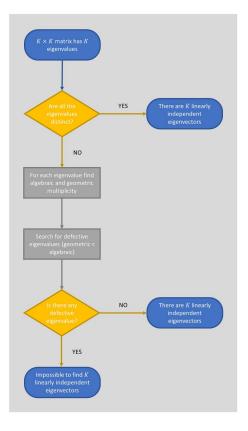
This system representation is called the modal form. Its solution is given by

$$z_i(t) = e^{\lambda_i t} z_i(0), \qquad i \in \{1, \dots, n\}.$$

Independent equations for each mode

Matrix is diagonalizable

All the eigenvectors are linearly independent

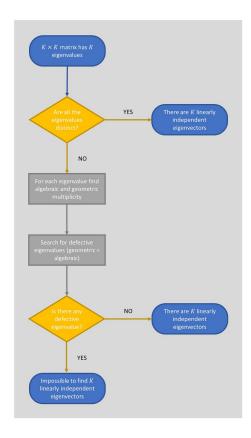


Matrix is diagonalizable

All the eigenvectors are linearly independent

This is true for symmetric-real matrices, but is not always the case.

What do you do when an LTE system's dynamics matrix A is not diagonalizable?



Solutions to general LTI systems

$$\dot{x}(t) = Ax(t), \ x(0) = x_0$$

$$\bigcup$$

$$x(t) = e^{At}x_0.$$

The "matrix exponential" to the rescue!

Solutions to general LTI systems

The "matrix exponential" to the rescue!

When you got the "rescue dog" job, but you lied on your resume.

Definition: for a square matrix A the matrix exponential is the series

$$e^{At} = \sum_{k=0}^{\infty} \frac{1}{k!} A^k t^k = I + At + \frac{1}{2} A^2 t^2 + \frac{1}{6} A^3 t^3 + \dots$$

Definition: for a square matrix A the matrix exponential is the series

$$e^{At} = \sum_{k=0}^{\infty} \frac{1}{k!} A^k t^k = I + At + \frac{1}{2} A^2 t^2 + \frac{1}{6} A^3 t^3 + \dots$$

...an infinite series.

Definition: for a square matrix A the matrix exponential is the series

$$e^{At} = \sum_{k=0}^{\infty} \frac{1}{k!} A^k t^k = I + At + \frac{1}{2} A^2 t^2 + \frac{1}{6} A^3 t^3 + \dots$$

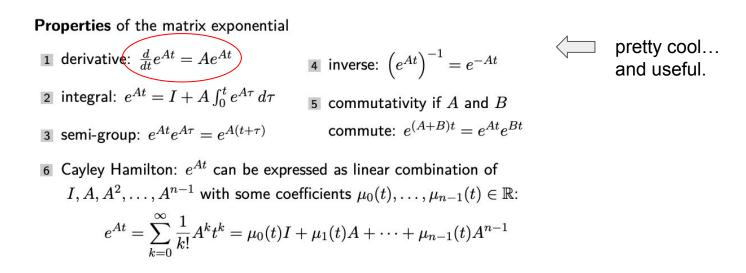
Properties of the matrix exponential

1 derivative: $\frac{d}{dt}e^{At} = Ae^{At}$ 2 integral: $e^{At} = I + A \int_0^t e^{A\tau} d\tau$ 3 semi-group: $e^{At}e^{A\tau} = e^{A(t+\tau)}$ 4 inverse: $(e^{At})^{-1} = e^{-At}$ 5 commutativity if A and B commute: $e^{(A+B)t} = e^{At}e^{Bt}$

6 Cayley Hamilton:
$$e^{At}$$
 can be expressed as linear combination of
 $I, A, A^2, \dots, A^{n-1}$ with some coefficients $\mu_0(t), \dots, \mu_{n-1}(t) \in \mathbb{R}$
 $e^{At} = \sum_{k=0}^{\infty} \frac{1}{k!} A^k t^k = \mu_0(t)I + \mu_1(t)A + \dots + \mu_{n-1}(t)A^{n-1}$

Definition: for a square matrix A the matrix exponential is the series

$$e^{At} = \sum_{k=0}^{\infty} \frac{1}{k!} A^k t^k = I + At + \frac{1}{2} A^2 t^2 + \frac{1}{6} A^3 t^3 + \dots$$



Definition: for a square matrix A the matrix exponential is the series

$$e^{At} = \sum_{k=0}^{\infty} \frac{1}{k!} A^k t^k = I + At + \frac{1}{2} A^2 t^2 + \frac{1}{6} A^3 t^3 + \dots$$

Properties of the matrix exponential

1 derivative: $\frac{d}{dt}e^{At} = Ae^{At}$ 4 inverse: $(e^{At})^{-1} = e^{-At}$ 2 integral: $e^{At} = I + A \int_0^t e^{A\tau} d\tau$ 5 commutativity if A and B3 semi-group: $e^{At}e^{A\tau} = e^{A(t+\tau)}$ commute: $e^{(A+B)t} = e^{At}e^{Bt}$

6 Cayley Hamilton:
$$e^{At}$$
 can be expressed as linear combination of
 $I, A, A^2, \dots, A^{n-1}$ with some coefficients $\mu_0(t), \dots, \mu_{n-1}(t) \in \mathbb{R}$:
 $e^{At} = \sum_{k=0}^{\infty} \frac{1}{k!} A^k t^k = \mu_0(t)I + \mu_1(t)A + \dots + \mu_{n-1}(t)A^{n-1}$

also pretty cool, and sometimes useful.

So how do we get
$$e^{At} = \sum_{k=0}^{\infty} \frac{1}{k!} A^k t^k = I + At + \frac{1}{2} A^2 t^2 + \frac{1}{6} A^3 t^3 + \dots$$
 ???

Five ways to compute the matrix exponential:

- Series expansion: if the system matrix A is nilpotent, apply the above definition
- Laplace transform: $e^{At} = \mathcal{L}^{-1}\{(sI A)^{-1}\}$
- Diagonalization: $e^{At} = V e^{\Lambda t} W = V e^{\Lambda t} V^{-1}$
- Cayley-Hamilton:

$$e^{At} = \mu_0(t)I + \mu_1(t)A + \dots + \mu_{n-1}(t)A^{n-1}$$
$$\begin{bmatrix} e^{\lambda_1 t} \\ \vdots \\ e^{\lambda_n t} \end{bmatrix} = \begin{bmatrix} 1 & \lambda_1 & \dots & \lambda_1^{n-1} \\ \vdots & \vdots & \vdots \\ 1 & \lambda_n & \dots & \lambda_n^{n-1} \end{bmatrix} \begin{bmatrix} \mu_0(t) \\ \vdots \\ \mu_{n-1}(t) \end{bmatrix}$$

- Educated guess

So how do we get
$$e^{At} = \sum_{k=0}^{\infty} \frac{1}{k!} A^k t^k = I + At + \frac{1}{2} A^2 t^2 + \frac{1}{6} A^3 t^3 + \dots$$
 ???

Five ways to compute the matrix exponential:

- Series expansion: if the system matrix A is nilpotent, apply the above definition Easiest. Doesn't always apply
- Laplace transform: $e^{At} = \mathcal{L}^{-1}\{(sI A)^{-1}\}$
- Diagonalization: $e^{At} = V e^{\Lambda t} W = V e^{\Lambda t} V^{-1}$
- Cayley-Hamilton:

$$e^{At} = \mu_0(t)I + \mu_1(t)A + \dots + \mu_{n-1}(t)A^{n-1}$$
$$\begin{bmatrix} e^{\lambda_1 t} \\ \vdots \\ e^{\lambda_n t} \end{bmatrix} = \begin{bmatrix} 1 & \lambda_1 & \dots & \lambda_1^{n-1} \\ \vdots & \vdots & \vdots \\ 1 & \lambda_n & \dots & \lambda_n^{n-1} \end{bmatrix} \begin{bmatrix} \mu_0(t) \\ \vdots \\ \mu_{n-1}(t) \end{bmatrix}$$

- Educated guess

Easiest. Need a good guess

So how do we get
$$e^{At} = \sum_{k=0}^{\infty} \frac{1}{k!} A^k t^k = I + At + \frac{1}{2} A^2 t^2 + \frac{1}{6} A^3 t^3 + \dots$$
 ???

Five ways to compute the matrix exponential:

- Series expansion: if the system matrix A is nilpotent, apply the above definition
- Laplace transform: $e^{At} = \mathcal{L}^{-1}\{(sI A)^{-1}\}$
- Diagonalization: $e^{At} = V e^{\Lambda t} W = V e^{\Lambda t} V^{-1}$
- Cayley-Hamilton:

$$e^{At} = \mu_0(t)I + \mu_1(t)A + \dots + \mu_{n-1}(t)A^{n-1}$$
$$\begin{bmatrix} e^{\lambda_1 t} \\ \vdots \\ e^{\lambda_n t} \end{bmatrix} = \begin{bmatrix} 1 & \lambda_1 & \dots & \lambda_1^{n-1} \\ \vdots & \vdots & \vdots \\ 1 & \lambda_n & \dots & \lambda_n^{n-1} \end{bmatrix} \begin{bmatrix} \mu_0(t) \\ \vdots \\ \mu_{n-1}(t) \end{bmatrix}$$

– Educated guess

Requires symbolic matrix inversion, difficult for matrices n > 2

So how do we get
$$e^{At} = \sum_{k=0}^{\infty} \frac{1}{k!} A^k t^k = I + At + \frac{1}{2} A^2 t^2 + \frac{1}{6} A^3 t^3 + \dots$$
 ???

Five ways to compute the matrix exponential:

- Series expansion: if the system matrix A is nilpotent, apply the above definition
- Laplace transform: $e^{At} = \mathcal{L}^{-1}\{(sI A)^{-1}\}$
- Diagonalization: $e^{At} = V e^{\Lambda t} W = V e^{\Lambda t} V^{-1}$

Useful when A is diagonalizable

- Cayley-Hamilton:

$$e^{At} = \mu_0(t)I + \mu_1(t)A + \dots + \mu_{n-1}(t)A^{n-1}$$
$$\begin{bmatrix} e^{\lambda_1 t} \\ \vdots \\ e^{\lambda_n t} \end{bmatrix} = \begin{bmatrix} 1 & \lambda_1 & \dots & \lambda_1^{n-1} \\ \vdots & \vdots & \vdots \\ 1 & \lambda_n & \dots & \lambda_n^{n-1} \end{bmatrix} \begin{bmatrix} \mu_0(t) \\ \vdots \\ \mu_{n-1}(t) \end{bmatrix}$$

- Educated guess

So how do we get
$$e^{At} = \sum_{k=0}^{\infty} \frac{1}{k!} A^k t^k = I + At + \frac{1}{2} A^2 t^2 + \frac{1}{6} A^3 t^3 + \dots$$
 ???

Five ways to compute the matrix exponential:

- Series expansion: if the system matrix A is nilpotent, apply the above definition
- Laplace transform: $e^{At} = \mathcal{L}^{-1}\{(sI A)^{-1}\}$
- Diagonalization: $e^{At} = V e^{\Lambda t} W = V e^{\Lambda t} V^{-1}$
- Cayley-Hamilton:

$$e^{At} = \mu_0(t)I + \mu_1(t)A + \dots + \mu_{n-1}(t)A^{n-1}$$
$$\begin{bmatrix} e^{\lambda_1 t} \\ \vdots \\ e^{\lambda_n t} \end{bmatrix} = \begin{bmatrix} 1 & \lambda_1 & \dots & \lambda_1^{n-1} \\ \vdots & \vdots & \vdots \\ 1 & \lambda_n & \dots & \lambda_n^{n-1} \end{bmatrix} \begin{bmatrix} \mu_0(t) \\ \vdots \\ \mu_{n-1}(t) \end{bmatrix}$$

- Educated guess

 Useful, requires solving a system of linear equations to get the coefficients

Cayley-Hamilton

Characteristic polynomial $p(\lambda)$ of the matrix $A \in \mathbb{R}^{n \times n}$:

$$\det(\lambda I - A) = \underbrace{a_0 + a_1\lambda + a_2\lambda^2 + \dots + a_{n-1}\lambda^{n-1} + \lambda^n}_{=p(\lambda)}.$$

Cayley Hamilton: the matrix A satisfies its characteristic polynomial

$$p(A) = a_0 I + a_1 A + a_2 A^2 + \dots + a_{n-1} A^{n-1} + A^n = 0.$$

Consequence: every matrix power A^k for $k \ge n$ can be expressed as linear combination of $I, A, A^2, \ldots, A^{n-1}$. In particular,

$$A^{n} = -\left(a_{0}I + a_{1}A + a_{2}A^{2} + \dots + a_{n-1}A^{n-1}\right).$$

Cayley-Hamilton

Characteristic polynomial $p(\lambda)$ of the matrix $A \in \mathbb{R}^{n \times n}$:

$$\det(\lambda I - A) = \underbrace{a_0 + a_1\lambda + a_2\lambda^2 + \dots + a_{n-1}\lambda^{n-1} + \lambda^n}_{= p(\lambda)}.$$
 Derived as a scalar equation

Cayley Hamilton: the matrix A satisfies its characteristic polynomial

$$p(A) = a_0 I + a_1 A + a_2 A^2 + \dots + a_{n-1} A^{n-1} + A^n = 0.$$
 Matrix equation for A

Consequence: every matrix power A^k for $k \ge n$ can be expressed as linear combination of $I, A, A^2, \ldots, A^{n-1}$. In particular,

$$A^{n} = -\left(a_{0}I + a_{1}A + a_{2}A^{2} + \dots + a_{n-1}A^{n-1}\right).$$
 Does not tell us what the a coefficients are (we have to solve for those)

Continuous LTI System with inputs

$$x(t) = e^{A(t-t_0)}x(t_0) + \int_{t_0}^t e^{A(t-\tau)}Bu(\tau) d\tau,$$

$$y(t) = Ce^{A(t-t_0)}x(t_0) + \int_{t_0}^t Ce^{A(t-\tau)}Bu(\tau) d\tau + Du(t)$$

Discrete LTI System with inputs

$$x_{k+1} = A_{\mathrm{d}}x_k + B_{\mathrm{d}}u_k,$$
$$y_k = C_{\mathrm{d}}x_k + D_{\mathrm{d}}u_k.$$

Discretization of LTI systems with inputs

$$\begin{bmatrix} A_{\rm d} & B_{\rm d} \\ \hline C_{\rm d} & D_{\rm d} \end{bmatrix} = \begin{bmatrix} e^{AT} & \int_0^T e^{A\tau} \, d\tau \, B \\ \hline C & D \end{bmatrix}$$

(T is the sampling time)

if
$$\det(A) \neq 0, B_d = A^{-1}(e^{AT} - I)B$$

Discrete LTI System with inputs

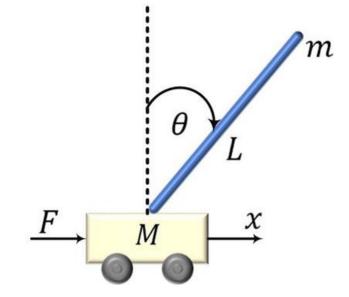
$$x_{k+1} = A_{\mathrm{d}}x_k + B_{\mathrm{d}}u_k,$$
$$y_k = C_{\mathrm{d}}x_k + D_{\mathrm{d}}u_k.$$

Solution:

$$x_{k} = A_{d}^{k} x_{0} + \sum_{\tau=0}^{k-1} A_{d}^{k-1-\tau} B_{d} u_{\tau},$$

$$y_{k} = C_{d} A_{d}^{k} x_{0} + \sum_{\tau=0}^{k-1} C_{d} A_{d}^{k-1-\tau} B_{d} u_{\tau} + D_{d} u_{k}.$$

Stability



Stability

Stability of continuous LTI systems

Transfer function representation

Consider $Y(s) = \frac{1}{s^2 + a_1 s + a_0} U(s)$ or its associated state-space realization $\dot{x} = \underbrace{\begin{bmatrix} 0 & 1 \\ -a_0 & -a_1 \end{bmatrix}}_{=A} x + \underbrace{\begin{bmatrix} 0 \\ 1 \end{bmatrix}}_{=B} u , \quad y = \underbrace{\begin{bmatrix} 1 & 0 \end{bmatrix}}_{=C} x.$

The characteristic polynomial is given by $p_2(\lambda) = \lambda^2 + a_1\lambda + a_0$.

Routh-Hurwitz criterion for polynomial of degree 2: The roots of $p_2(\lambda)$ have strictly negative real part **if and only if** $a_0 > 0$ and $a_1 > 0$.

Routh-Hurwitz criterion for polynomial of degree n: The roots of

$$p_n(\lambda) = \lambda^n + a_{n-1}\lambda^{n-1} + \dots + a_1\lambda + a_0$$

have strictly negative real part only if $a_i > 0$ for all $i \in \{0, 1, \dots, n-1\}$.

Stability of continuous LTI systems

State space representation

The continuous-time linear homogeneous system $\dot{x} = Ax$ is

1 globally asymptotically stable if and only if all eigenvalues of A have strictly negative real part $\operatorname{Re}(\lambda) < 0$ for all $\lambda \in \operatorname{spectrum}(A)$.

Such a matrix is also called a **Hurwitz** matrix. We often abbreviate the condition $\{\operatorname{Re}(\lambda) < 0 \ \forall \lambda \in \operatorname{spectrum}(A)\}$ as $\operatorname{spectrum}(A) \subset \mathbb{C}_{-}$.

- 2 stable if and only if all eigenvalues of A have non-positive real part Re(λ) ≤ 0 for all λ ∈ spectrum(A), & all Jordan blocks corresponding to eigenvalues with zero real parts are of dimension 1 × 1.
- **3 unstable** if and only if at least one eigenvalue of A has a positive real part or zero real part with corresponding Jordan block larger than 1×1 .

Stability of continuous LTI systems

State space representation

The continuous-time linear homogeneous system $\dot{x} = Ax$ is

- globally asymptotically stable if and only if all eigenvalues of A have strictly negative real part Re(λ) < 0 for all λ ∈ spectrum(A).
 Such a matrix is also called a Hurwitz matrix. We often abbreviate the condition {Re(λ) < 0 ∀λ ∈ spectrum(A)} as spectrum(A)⊂ C₋.
- 2 stable if and only if all eigenvalues of A have non-positive real part
 Re(λ) ≤ 0 for all λ ∈ spectrum(A), & all Jordan blocks corresponding to eigenvalues with zero real parts are of dimension 1 × 1.
- **3 unstable** if and only if at least one eigenvalue of A has a positive real part or zero real part with corresponding Jordan block larger than 1×1 .

Stability of discrete LTI systems

State space representation

The discrete-time linear homogeneous system $x^+ = Ax$ is

1 globally asymptotically stable if and only if all eigenvalues of A have modulus strictly less than one, $|\lambda| < 1$ for all $\lambda \in \operatorname{spectrum}(A)$.

Such a matrix is also called a **Schur** matrix. We often abbreviate the condition $\{|\lambda| < 1 \ \forall \lambda \in \text{spectrum}(A)\}$ as $\text{spectrum}(A) \subset \mathbb{D}$.

- 2 **stable** if and only if all eigenvalues of A have modulus less than one, $|\lambda| \leq 1$ for all $\lambda \in \operatorname{spectrum}(A)$, & all Jordan blocks corresponding to eigenvalues with modulus one are of dimension 1×1 .
- 3 **unstable** if and only if at least one eigenvalue of A has a modulus larger than one or modulus one with corresponding Jordan block larger than 1×1 .

Nonlinear system stability

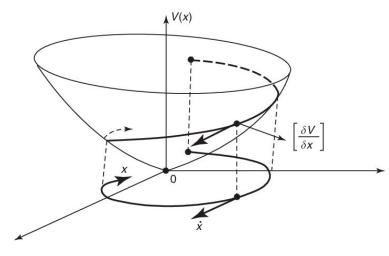
Use Lyapunov:

V(0) = 0 and $V(x) > 0 \forall x \in S \setminus \{0\}$ (positive definite)

and

$$\dot{V}(x) = \nabla V(x)^T \cdot f(x) \le 0 \quad x \in S \quad (\text{negative semidefinite})$$

then x = 0 is stable.



Nonlinear system stability verification

Consider the system $\dot{x} = f(x)$ with an equilibrium at the origin: f(0) = 0

1 via the solution (typically numerically):

||x(t)|| bounded (& convergent) \iff (asymptotic) stability

 \Rightarrow not practical for state-space dimension $n \ge 2$ (useful in linear case)

2 via linearization:

The origin of $\dot{x} = f(x)$ is locally asymptotically stable (resp., unstable) if the linearized system $\frac{d}{dt}\Delta x = \frac{\partial f(x)}{\partial x}\Big|_{x=0} \Delta x$ is asymptotically stable (resp., unstable).

 \Rightarrow often applicable, but now always; see e.g., $\dot{x}=\pm\,x^3$

